
Chapter 24
JavaScript Practices

803

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:47 PM

Color profile: Generic CMYK printer profile
Composite Default screen

804 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

In the previous two chapters we covered some of the proprietary issues involving
the Netscape and Internet Explorer browsers. While an awareness of the features
and quirks of each major browser and version is required to write well-behaved code,

it is not a sufficient condition. You need to be able to apply what you know in an effective
manner in order to accommodate the needs of your users, fellow programmers, and
future script maintainers.

In this chapter we bring to a close our discussion of JavaScript by highlighting some
recommended practices for and salient issues regarding JavaScript in the “real world.”
Our focus is on errors and debugging as well as on writing robust JavaScript that utilizes
defensive programming techniques. We also touch on some distribution issues, such as
protecting your code and decreasing its download time, and discuss where JavaScript
fits into the “big picture” of the Web. The discussion in this chapter condenses many
years worth of programming experience into a few dozen pages, so that developers—
new ones in particular—can save themselves and their users some headaches by careful
consideration of the content presented here.

Errors
Before launching into a discussion of how errors can be found and handled, it is useful
to understand the taxonomy of errors found in typical applications. The wide variety of
errors that can occur during the execution of a script can be roughly placed into three
categories: syntax errors, semantic errors, and runtime errors.

Of the three types of errors, syntax errors are the most obvious and are the result of
code that somehow violates the rules of the language itself. For example, writing the
following:

var x = y + * z;

is a syntax error because the syntax of the * operator requires two expressions to
operate upon, and “y +” does not constitute a valid expression. Another example is:

var myString = "This string doesn't terminate

because the string literal never terminates.
Syntax errors are generally fatal in the sense that they are errors from which the

interpreter cannot recover. The reason they are fatal is that they introduce ambiguity,
which the language syntax is specifically designed to avoid. Sometimes the interpreter
can make some sort of assumption about what the programmer intended and can
continue to execute the rest of the script. For example, in the case of an unterminated
string literal, the interpreter might assume that the string ends at the end of the line.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

However, scripts with syntax errors should for all intents and purposes be considered
“dead,” as they do not constitute a valid program and their behavior can therefore be
erratic, destructive, or otherwise anomalous.

Luckily, syntax errors are fairly easy to catch because they are immediately evident
when the script is parsed before being executed. You cannot hide a syntax error from
the interpreter in any way except by placing it in a comment. Even placing it inside a
block that will never be executed, as in:

if (false) { x = y + * z }

will still result in an error. The reason, as we have stated, is that these types of errors show
up during the parsing or compilation of the script, a step that occurs before execution. You
can easily avoid syntax errors by turning on error warnings in the browser and then
loading the script or by using one of the debuggers discussed later in this chapter.

Errors of the second type, semantic errors, occur when the program executes a
statement that has an effect that was unintended by the programmer. These errors are
much harder to catch because they tend to show up under odd or unusual circumstances
and therefore go unnoticed during testing. The most common type of semantic errors
are those caused by JavaScript’s weak typing; for example:

function add(x, y)

{

return x + y;

}

var mySum = add(prompt("Enter a number to add to five",""), 5);

If the programmer intended add() to return the numeric sum of its two arguments,
then the assignment above is a semantic error in the sense that mySum is assigned
a string instead of a number. The reason, of course, is that prompt() returns a string
that causes + to act as the string concatenation operator, rather than as the numeric
addition operator.

Semantic errors arise most often as the result of interaction with the user. They can
usually be avoided by including explicit checking in your functions. For example, we
could redefine the add() function to ensure that the type and number of the arguments
are correct:

function add(x, y) {

if (arguments.length != 2 || typeof(x) != "number" || typeof(y) != "number")

return(Number.NaN);

retur n x + y;

}

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 805

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

806 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Alternatively, the add() function could be rewritten to attempt to convert its arguments
to numbers—for example, by using the parseFloat() or parseInt() function.

In general, semantic errors can be avoided (or at least reduced) by employing
defensive programming tactics. If you write your functions anticipating that users and
programmers will purposely try to break them in every conceivable fashion, you can
save yourself future headaches. Writing “paranoid” code might seem a bit cumbersome,
but doing so enhances code reusability and site robustness (in addition to showcasing
your mature attitude towards software development).

In the final category are the runtime errors, which are exactly what they sound like:
errors that occur while the script is running. These errors result from JavaScript that
has the correct syntax but which encounters some sort of problem in its execution
environment. Common runtime errors result from trying to access a variable, property,
method, or object that does not exist or from attempting to utilize a resource that is not
available.

Some runtime errors can be found by examination of source code. For example,

window.allert("Hi there");

results in a runtime error because there is no allert() method of the Window object.
This example constitutes perfectly legal JavaScript, but the interpreter cannot tell until
runtime that invoking window.allert() is invalid, because such a method might have
been added as an instance property at some previous point during execution.

Other kinds of runtime errors cannot be caught by examination of source code.
For example, while the following might appear to be error-free,

var products = ["Widgets", "Snarks", "Phasers"]

var choice = parseInt(prompt("Enter the number of the product you are interested in"));

alert("You chose : " + products[choice]);

what happens if the user enters a negative value for choice? A runtime error indicating
the array index is out of bounds. Although some defensive programming can help here,

var products = ["Widgets", "Snarks", "Phasers"]

var choice = parseInt(prompt("Enter the number of the product in which you are interested"));

if (choice >= 0 && choice < products.length)

alert("You chose : " + products[choice]);

the reality is that you cannot catch all potential runtime errors before they occur. You
can, however, catch them at runtime using JavaScript’s error and exception handling
facilities, which are discussed later in the chapter.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:48 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 807

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Debugging
Every programmer makes mistakes, and a large part of becoming a more proficient
developer is honing your instincts for finding and rooting out errors in your code.
Debugging is a skill that is best learned through experience, and although basic debugging
practices can be taught, each programmer must develop an approach that works for him
or her. It is because of the individual nature of debugging that most software development
groups have a language expert, whether formally or informally designated, to whom
elusive problems and anomalies can be taken for resolution. This individual is often
a veteran developer with an ability for tracking down problems honed by years of
software development experience. Experience is indeed the greatest teacher when it
comes to debugging.

Turning on Error Messages
The most basic way to track down errors is by turning on error information in your
browser. This is accomplished in Internet Explorer by using the Tools menu, selecting
Internet Options, and activating the Advanced tab. Make sure that the “Disable script
debugging” box is unchecked and that the “Display a notification about every script
error” box is checked, as shown in Figure 24-1.

Netscape 3 shows all JavaScript errors to the user by default, but Netscape 4+ sends
them to the JavaScript Console. To view the Console in Netscape 4.x, type javascript: in
the browser’s Location bar. In Netscape 6, use the Tasks menu to open the Tools submenu,
and then select “JavaScript Console.” By default, the only indication that an error has
occurred in Netscape 4 is a message on the status bar:

However, it is possible to configure Netscape 4 to bring up the JavaScript Console
whenever an error occurs. To do so follow these steps:

1. Quit the browser.

2. Open the file prefs.js for editing. This file is usually found in the Netscape
install directory (or in UNIX, it is often called preferences.js under ~/.netscape).

3. Add the following line to the file:
user_pref(“javascript.console.open_on_error”, true);.

4. Save the file and close the editor.

Netscape 6 gives no indication when an error occurs, so you must keep the JavaScript
Console open and watch for errors as your script executes.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Error notifications that show up on the JavaScript Console or through Internet
Explorer dialog boxes are the result of both syntax and runtime errors. Loading a file
with the syntax error from a previous example,

var myString = "This string doesn't terminate

results in the error dialog and JavaScript Console messages in Figure 24-2. Loading
a file with the runtime error from a previous example,

window.allert("Hi there");

results in the error dialog and JavaScript Console shown in Figure 24-3.
A very helpful feature of this kind of error reporting is that it includes the line

number at which the error occurred. However, you should be aware that occasionally
line numbers can become skewed as the result of externally linked files. Most of the

808 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Figure 24-1. Enabling script errors in Internet Explorer

This setting
enables debugging

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:49 PM

Color profile: Generic CMYK printer profile
Composite Default screen

time these error messages are fairly easy to decipher, but some messages are less
descriptive than others. It is therefore useful here to explicitly mention some
common mistakes.

Common Mistakes
Table 24-1 indicates some common JavaScript mistakes and their symptoms. This list is
by no means exhaustive, but it does include the majority of mistakes made by novice
programmers. Of this list, errors associated with type mismatches and access to form
elements are probably the hardest for beginners to notice, so you should take special
care when interacting with forms or other user-entered data.

Using some sort of integrated development environment (IDE) that matches
parentheses and that colors your code is often helpful in avoiding syntax errors.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 809

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Figure 24-2. An unterminated string constant syntax error in Internet Explorer
and Netscape

Figure 24-3. A runtime error in Internet Explorer and Netscape

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Such programs automatically show where parentheses and brackets match and
provide visual indications of the different parts of the script. For example, comments
might appear in red while keywords appear blue and string literals appear in black.

810 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Mistake Example Symptom

Infinite loops while (x<myArray.length)
doSomething(myArray[x]);

A stack overflow error or a
totally unresponsive page.

Using assignment
instead of
comparison (and
vice versa)

if (x = 10)
// or
var x == 10;

Clobbered or unexpected
values. Some JavaScript
implementations
automatically fix this type of
error. Many programmers
put the variable on the
right-hand side of a
comparison in order to cause
an error when this occurs.
For example, “if (10 = x)”

Unterminated
string literals

var myString = “Uh oh An “unterminated string
literal” error message or
malfunctioning code

Mismatched
parentheses

if (typeof(x) == “number”
alert(“Number”);

A “syntax error,” “missing
‘)’”, or “expected ‘)’” error
message

Mismatched curly
braces

function mult(x,y) {
return (x,y);

Extra code being executed as
part of a function or
conditional, functions that
are not defined, and
“expected ‘}’”, “missing ‘}’”,
or “mismatched ‘}’” error
messages

Mismatched
brackets

x[0 = 10; “invalid assignment,”
“expected ‘]’”, or “syntax
error” error messages

Table 24-1. Common JavaScript Mistakes

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 811

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Mistake Example Symptom

Misplaced
semicolons

if (isNS4 == true);
hideLayers();

Conditional statements
always being executed,
functions returning early or
incorrect values, and very
often errors associated with
unknown properties (as in
this example)

Omitted “break”
statements

switch(browser)
{
case “IE”: // IE-specific
case “NS”: // NS-specific
}

Statements in the latter part
of the switch always being
executed and very often
errors associated with
unknown properties

Type errors var sum = 2 + “2”; Values with an unexpected
type, functions requiring a
specific type not working
correctly, and computations
resulting in NaN

Accessing
undefined
variables

var x = variableName; “variableName is not defined”
error messages

Accessing
non-existent object
properties

var x =
window.propertyName;

undefined values where
you do not expect them,
computations resulting
in NaN, “propertyName
is null or not an object,”
or “objectName has no
properties” error messages

Invoking
non-existent
methods

window.methodName() “methodName is not a
function,” or “object doesn’t
support this property or
method” error messages

Invoking
undefined
functions

noSuchFunction(); “object expected” or
“noSuchFunction is not
defined” error messages

Table 24-1. Common JavaScript Mistakes (continued)

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:50 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Debugging Techniques
Although turning on error messages and checking for common mistakes can help you
find some of the most obvious errors in your code, doing so is rarely helpful in finding
logical errors. There are, however, some widespread practices that many developers
employ when trying to find the reason for malfunctioning code.

Outputting Debugging Information
One of the most common techniques is to output verbose status information
throughout the script in order to verify the flow of execution. For example, a debugging
flag might be set at the beginning of the script that enables or disables debugging
output included within each function. The most common way to output information
in JavaScript is using alert()s; for example, you might write something like:

var debugging = true;

var whichImage = "widget";

if (debugging)

812 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Mistake Example Symptom

Accessing the
document before it
has finished
loading

<head><script>var
myElement=document.all.m
yElement;</script></head>

undefined values, broken
DHTML, and errors
associated with nonexistent
properties and methods

Accessing a form
element rather
than its value

var x =
document.myform.myfield;

Computation resulting in
NaN, broken DHTML, and
form “validation” that
always rejects its input

Assuming that
detecting an object
or method assumes
the existence of all
other features
related to the
detected object.

if (document.layers)
{
// do Netscape 4 stuff

}
if (document.all)
{
// do all sorts of IE stuff
}

Probably will result in an
error message complaining
about a nonexistent object or
property, because other
proprietary objects beyond
the detected ones were
assumed to be presented and
then used.

Table 24-1. Common JavaScript Mistakes (continued)

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

alert("About to call swapImage() with argument : " + whichImage);

var swapStatus = swapImage(whichImage);

if (debugging)

alert("Returned from swapImage() with swapStatus="+swapStatus);

and include alert()s marking the flow of execution in swapImages(). By examining the
content and order of the alert()s as they appear, you are granted a window to the
internal state of your script.

Because using a large number of alert()s when debugging large or complicated scripts
may be impractical (not to mention annoying), output is often sent to another browser
window instead. Using this technique, a new window is opened at the beginning of the
script, and debugging information is written into the window using its document.write()
method. For example, consider the following (erroneous) implementation of the
extractCookie() method from Chapter 16 that has been instrumented with debugging
statements. Of course, you can omit the HTML from the calls to output() below; we
included them to ensure correct rendering. Note the for loop immediately after the
window.open(). This loop kills some time before writing to the new window in order to
avoid a bug with Internet Explorer that sometimes occurs when you attempt to write()
to a newly opened empty window before it is done setting up.

var debugging = true;

if (debugging)

{

var debuggingWindow = window.open("");

// omitting the name causes a new window to open

for (var x=0; x<1500000; x++); // give IE time to open window

output = debuggingWindow.document.writeln;

output("<html><head><title>Debugging

Window</title></head><body><pre>");

// we're going to be writing preformatted info, so include the <pre>

}

var cookies = new Object(); // associative array indexed as cookies["name"] = "value"

function extractCookies()

{ // extract current cookies, destroying old value of cookies array

if (debugging) output("Beginning extractCookies on:\n" + document.cookie + "\n");

var name, value, beginning, middle, end;

beginning = 0;

while (beginning < document.cookie.length)

{

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 813

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

814 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

if (debugging)

output("Top of the loop (beginnin g = " + beginning + ")");

middle = document.cookie.indexOf('=', beginning);

end = document.cookie.indexOf(';', beginning);

if (end == -1)

end = document.cookie.length;

if ((middle > end) || (middle == -1))

{ // if no equal sign in this cookie...

if (debugging) output("\tNo value for this cookie");

name = document.cookie.substring(beginning, end);

value = "";

}

else

{

name = document.cookie.substring(beginning, middle);

value = document.cookie.substring(middle, end);

if (debugging)

output("\tExtracted cookie with name='"+name+"' and value='"+value+"'");

}

cookies[name] = unescape(value);

beginning = end + 1;

}

if (debugging) output("\nExiting extractCookies()</pre></body></html>")

}

document.cookie = "username=fritz";

document.cookie = "favoritecolor=green";

document.cookie = "debuggingisfun=false";

extractCookies();

alert(cookies["favoritecolor"]);

Running this code, it is apparent that there is some sort of error. The following alert
is shown:

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:51 PM

Color profile: Generic CMYK printer profile
Composite Default screen

An examination of the output to the debugging window shown in Figure 24-4 reveals
that the reason for this behavior is an extra space in the name of the cookies. Also, it
appears as if the equal sign is being included in the value.

Tracing through the source code it looks like the line “beginning = end + 1” is the
culprit. It appears as if beginning is being set to the character before the name of the
next cookie (which is a space) rather than being set to the first character of the cookie
name. So we change “beginning = end + 1” to “beginning = end + 2” in hopes that this
will solve the problem. Doing so should point beginning past the space to the beginning
of the cookie name. Running the script with this change results in:

This is definitely progress, but is still incorrect. The debugging output is shown in
Figure 24-5.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 815

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Figure 24-4. Debugging output for the extractCookies() example

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

It looks as though we have a similar problem with the cookie value. Tracing through
the code yet again we find that the variable middle is set to the equal sign in the current
cookie (if one exists). When we extract the cookie value into value, middle is passed as the
start of the value substring. Changing “value = document.cookie.substring(middle, end)”
to “value = document.cookie.substring(middle + 1, end)” should start the substring at
the correct position. Making this change and running the script again results in:

This is correct. An examination of the debugging window shows that the script appears
to be functioning correctly, so we can disable debugging. To do so, either the debugging
statements can be removed from the script or debugging can be set to false.

816 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Figure 24-5. Debugging out for the extractCookies() example after making the first
correction

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:52 PM

Color profile: Generic CMYK printer profile
Composite Default screen

While this example may seem somewhat contrived, it reflects the actual debugging
process that went on when extractCookies() was written. Using alert()s or write()s to
assist in tracking down problems is a very common technique, but as you can see it
requires a bit of work. A better solution is to use a tool designed specifically for the task.

Using a Debugger
A debugger is an application that places all aspects of script execution under the control
of the programmer. Debuggers provide fine-grain control over the state of the script
through an interface that allows you to examine and set values as well as control the
flow of execution.

Once a script has been loaded into a debugger, it can be run one line at a time or
instructed to halt at certain breakpoints. The idea is that once execution is halted, the
programmer can examine the state of the variables in order to determine if something
is amiss. You can also watch variables for changes in their values. When a variable is
watched, the debugger will suspend execution whenever the value of the variable
changes. This is tremendously useful in trying to track down variables that are
mysteriously getting clobbered. Most debuggers also allow you to examine a trace of
the program, the call tree representing the flow of execution through various pieces of
code. And to top it all off, debuggers are often programmed to alert the programmer
when a potentially problematic piece of code is encountered. And because debuggers
are specifically designed to track down problems, the error messages and warnings
they display tend to be more helpful than those of the browser.

Because you can type in javascript: pseudo-URLs in the Location bar of Netscape 4
and 6, you can use the browser itself as a primitive debugger. Netscape 4’s JavaScript
Console also allows you to type in arbitrary statements that are executed within the
context of the current document. You can use these capabilities to examine or set values
on a page—for example, with alert() or assignment statements.

Clearly, debuggers sound like extremely useful tools. But where can they be found?
You have three primary options. The first is the Netscape JavaScript debugger, a Java
application that runs on top of Netscape 4.x and is implemented specifically with
Netscape JavaScript and the Netscape family of browsers in mind. This debugger
has the advantage of accommodating Netscape-centric technologies, like signed scripts
and LiveConnect, but has the disadvantage of being a couple of generations out of date
(no new version has appeared in the last several years). You can find more information
about this free tool at http://developer.netscape.com/software/jsdebug.html.

Your second option is Microsoft Script Debugger, a free utility that integrates
with Internet Explorer 4+ and is available from http://msdn.microsoft.com/scripting.
Whenever debugging is turned on and you load a page that has errors, the following
dialog is shown in place of the normal error message, allowing you to load the page
into the debugger.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 817

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Of course, you can also load a document directly into the debugger without having an
error occur. This debugger has the advantage of close coupling with Microsoft’s JScript
and document object model and is much more current (though still a bit out of date)
than Netscape’s debugger. A screenshot of Microsoft Script Debugger is shown in
Figure 24-6.

The third option you have is to use a commercial development environment. A
JavaScript debugger is usually just one small part of such development tools, which

818 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Figure 24-6. Microsoft Script Debugger

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 819

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

can offer sophisticated HTML and CSS layout capabilities and can even automate
certain aspects of site generation. This option is probably the best choice for professional
developers, because chances are you will need a commercial development environment
anyway, so you might as well choose one with integrated JavaScript support. A typical
example of such an environment is Macromedia’s Dreamweaver, available from http://
www.macromedia.com/software/dreamweaver/ (for purchase or free trial). There are
two primary drawbacks to such environments. The first and most obvious is the expense.
The second is the fact that such tools tend to emit spaghetti code, so trying to hook
your handwritten code into JavaScript or HTML and CSS generated by one of these
tools can be tedious.

Defensive Programming
Now that we have covered how you can recognize and track down errors in your code,
we turn to techniques you can use to prevent or accommodate problems that might be
outside of your direct control.

Defensive programming is the art of writing code that functions properly under
adverse conditions. In the context of the Web, an “adverse condition” could be many
different things: for example, a user with a very old browser or an embedded object or
frame that gets stuck while loading. Coding defensively involves an awareness of the
situations in which something can go awry. Some of the most common possibilities
you should try to accommodate include:

■ Users with JavaScript turned off.

■ Users with cookies turned off.

■ Embedded Java applets that throw an exception.

■ Frames or embedded objects that load incorrectly or incompletely.

■ Older browsers that do not support DHTML.

■ Older browsers with incomplete JavaScript implementations—for example,
those that do not support a specific feature such as the push(), pop(), and
related methods in the Array object of versions of Internet Explorer prior to 5.5.

■ Browsers with known errors, such as early Netscape browsers with incorrectly
functioning Date objects.

■ Users with third-party, text-based, or aural browsers.

■ Users on non-Windows platforms. This is especially important in light of the
fact that Internet Explorer for MacOS lags significantly behind Internet Explorer
for Windows in terms of functionality.

■ Malicious users attempting to abuse a service or resource through your scripts.

■ Users who enter typos or other invalid data into form fields or dialog boxes,
such as entering letters in a field requiring numbers.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:53 PM

Color profile: Generic CMYK printer profile
Composite Default screen

820 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

The key to defensive programming is flexibility. You should strive to accommodate
as many different possible client configurations and actions as you can. From a coding
standpoint, this means you should include HTML (such as <noscript>s) and browser
sensing code that permit graceful degradation of functionality across a variety of platforms.
From a testing standpoint, this means you should always run a script in as many
different browsers and versions and on as many different platforms as possible
before placing it live on your site.

In addition to accommodating the general issues described above, you should also
consider the specific things that might go wrong with your script. If you are not sure
when a particular language feature you are using was added to JavaScript, it is always
a good idea to check a reference, such as Appendix B of this book, to make sure it is
well supported. If you are utilizing DHTML or embedded objects, you might consider
whether you have appropriate code in place to prevent execution of your scripts while
the document is still loading. If you have linked external .js libraries, you might include
a flag in the form of a global variable in each library that can be checked to ensure that
the script has properly loaded.

In this section we discuss a variety of techniques you can use for defensive
programming. While no single set of ideas or approaches will solve every problem that
might be encountered, applying the following principles to your scripts can dramatically
reduce the number of errors your clients encounter. Additionally, doing so can also help
you solve those errors that are encountered in a more timely fashion. However, at the
end of the day, the efficacy of defensive programming comes down to the skill, experience,
and attention to detail of the individual developer. If you can think of a way for the user
to break your script or to cause some sort of malfunction, this is usually a good sign
that more defensive techniques are required.

Error Handlers
Internet Explorer 3+ and Netscape 3+ provide primitive error-handling capabilities
through the nonstandard onerror handler of the Window object. By setting this event
handler, you can augment or replace the default action associated with runtime errors
on the page. For example, you can replace or suppress the error messages shown in
Netscape 3 and Internet Explorer (with debugging turned on) and the output to the
JavaScript Console in Netscape 4+. The values to which window.onerror can be set
and the effects of doing so are outlined in Table 24-2.

The onerror handler is also available for objects other than Window in many browsers,
most notably the and <object> elements.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 821

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Because the display of JavaScript error messages can be unsettling to non-technical
users, their display is often suppressed:

function doNothing() { return true; }

window.onerror = doNothing;

or replaced with a more benign message:

function reportError()

{

alert("Sorry, an error has occurred. As a result, parts of the page might not work properly.");

return true;

}

window.onerror = reportError; // replace the default error functionality

window.noSuchProperty(); // throw a runtime error

The result in Netscape 6 is shown here:

Value of
window.onerror Effect

null Suppresses reporting of runtime errors in Netscape 3+.

A function which
returns true

Executes the function whenever a runtime error occurs and
suppresses the normal reporting of runtime errors.

A function which
returns false

Executes the function whenever a runtime error occurs and
reports the error as usual.

Table 24-2. Effect of Setting window.onerror to Different Values

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:54 PM

Color profile: Generic CMYK printer profile
Composite Default screen

A useful feature of onerror handlers is that they are automatically passed three
values by the browser. The first argument is a string containing an error message
describing the error that occurred. The second is a string containing the URL of the
page that generated the error, which might be different from the current page if, for
example, the document has frames. The third parameter is a numeric value indicating
the line number at which the error occurred.

Netscape 6 does not currently pass these values to onerror handlers. This could be a
bug, but it more likely represents a movement towards the exception-handling features
described in the next section.

You can use these parameters to create custom error messages, such as:

function reportError(message, url, lineNumber)

{

if (message && url && lineNumber) // avoid netscape 6

alert("An error occurred at "+ url + ", lin e " + lineNumber + "\nThe error is : " + message);

return true;

}

window.onerror = reportError; // assign error handler

window.noSuchProperty(); // throw an error

The result of which in Internet Explorer might be:

However, a better use for this feature is to add automatic error reporting to your
site. You might trap errors and send the information to a new browser window, which
automatically submits the data to a CGI or which loads a page that can be used to do
so. We illustrate the concept with the following code. Suppose you have a CGI script
“submitError.cgi” on your server that accepts error data and automatically notifies
the webmaster or logs the information for future review. You might then write the
following page which retrieves data from the document that opened it and allows
the user to include more information about what happened. This file is named
“errorReport.html” in our example:

822 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 823

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

<html>

<head>

<title>Error Submission</title>

<script language="JavaScript" type="text/javascript">

<!--

// fillValues() is invoked when the page loads and retrieves error data from the offending document

function fillValues()

{

if (window.opener && !window.opener.closed && window.opener.lastErrorURL)

{

document.errorForm.url.value = window.opener.lastErrorURL;

document.errorForm.line.value = window.opener.lastErrorLine;

document.errorForm.message.value = window.opener.lastErrorMessage;

document.errorForm.userAgent.value = navigator.userAgent;

}

}

//-->

</script>

</head>

<body onload="fillValues()">

<h2>An error occurred</h2>

Please help us track down errors on our site by describing in more detail what you were doing when

the error occurred. Submitting this form helps us improve the quality of our site, especially for

users with your browser.

<form id="errorForm" name="errorForm" action="/cgi-bin/submitError.cgi">

The following information will be submitted:

URL: <input type="text" name="url" id="url" size="80">

Line: <input type="text" name="line" id="line" size="4">

Error: <input type="text" name="message" id="message" size="80">

Your browser: <input type="text" name="userAgent" id="userAgent" size="60">

Additional Comments:

<textarea name="comments" value="comments" cols="40" rows="5">

</textarea>

<input type="submit" value="Submit to webmaster">

</form>

</body>

</html>

The other part of the script is placed in each of the pages on your site and provides
the information that fillValues() requires. It does so by setting a handler for onerror that

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

824 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

stores the error data and opens “errorReport.html” automatically when a runtime
error occurs:

var lastErrorMessage, lastErrorURL, lastErrorLine;

// variables to store error data

function reportError(message, url, lineNumber)

{

if (message && url && lineNumber)

{

lastErrorMessage = message;

lastErrorURL = url;

lastErrorLine = lineNumber;

window.open("errorReport.html");

}

return true;

}

window.onerror = reportError;

When “errorReport.html” is opened as a result of an error, it retrieves the relevant
data from the window that opened it (the window with the error) and presents the data
to the user in a form. Figure 24-7 shows the window opened as the result of the following
runtime error:

window.noSuchMethod();

The first four form values are automatically filled in by fillValues(), and the <textarea>
shows a hypothetical description entered by the user. Of course, the presentation of
this page needs some work (especially under Netscape 4), but the concept is solid.

There are two important issues regarding use of the onerror handler. The first is
that this handler fires only as the result of runtime errors; syntax errors do not trigger
the onerror handler and in general cannot be suppressed. The second is that support
for this handler is spotty under some versions of Internet Explorer. While IE4.x and
5.5 appear to have complete support, some versions of IE5.0 might have problems.

Exceptions
An exception is a generalization of the concept of an error to include any unexpected
condition encountered during execution. While errors are usually associated with
some unrecoverable condition, exceptions can be generated in more benign problematic
situations and are not usually fatal. JavaScript 1.4+ and JScript 5.0+ support exception
handling as the result of their movement towards ECMAScript conformance.

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:55 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 825

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

When an exception is generated, it is said to be thrown (or, in some cases, raised). The
browser may throw exceptions in response to various tasks, such as incorrect DOM
manipulation, but exceptions can also be thrown by the programmer or an embedded
Java applet. Handling an exception is known as catching an exception. Exceptions are
often explicitly caught by the programmer when performing operations that he or she
knows could be problematic. Exceptions that are uncaught are usually presented to the
user as runtime errors.

The Error Object
When an exception is thrown, information about the exception is stored in an Error
object. The structure of this object varies from browser to browser, but its most interesting
properties and their support are described in Table 24-3.

Figure 24-7. errorReport.html opened as the result of an error

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

826 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

The Error() constructor can be used to create an exception of a particular type.
The syntax is

var variableName = new Error(message);

where message is a string indicating the message property that the exception should
have. Unfortunately, support for the argument to the Error() constructor in Internet
Explorer 5 and some very early versions of 5.5 is particularly bad, so you might have
to set the property manually, such as:

Property IE5? IE5.5+? NS6+? ECMA? Description

description Yes Yes No No String describing the nature
of the exception.

fileName No No Yes No String indicating the URL of
the document that threw the
exception.

lineNumber No No Yes No Numeric value indicating the
line number of the statement
that generated the exception.

message No Yes Yes Yes String describing the nature
of the exception.

name No Yes Yes Yes String indicating the type of
the exception. ECMAScript
values for this property are
“EvalError,” “RangeError,”
“ReferenceError,”
“SyntaxError,” “TypeError,”
and “URIError.”

number Yes Yes No No Number indicating the
Microsoft-specific error
number of the exception. This
value can deviate wildly from
documentation and from
version to version.

Table 24-3. Properties of the Error Object

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

var myException = new Error("Invalid data entry");

myException.message = "Invalid data entry";

You can also create instances of the specific ECMAScript exceptions given in the
name row of Table 24-3. For example, to create a syntax error exception you might write

var myException = new SyntaxError("The syntax of the statement was invalid");

However, in order to keep user-created exceptions separate from those generated by
the interpreter; it is generally a good idea to stick with Error objects unless you have
a specific reason to do otherwise.

try, catch, and throw
Exceptions are caught using the try/catch construct. The syntax is:

try {

statements that might generate an exception

} catch (theException) {

statements to execute when an exception is caught

} finally {

statements to execute unconditionally

}

If a statement in the try block throws an exception, the rest of the block is skipped
and the catch block is immediately executed. The Error object of the exception that was
thrown is placed in the “argument” to the catch block (theException in this case, but any
identifier will do). The theException instance is accessible only inside the catch block and
should not be a previously declared identifier. The finally block is executed whenever
the try or catch block finishes and is used in other languages to perform clean-up work
associated with the statements that were tried. However, because JavaScript performs
garbage collection, the finally block is essentially useless.

Note that the try block must be followed by exactly one catch or one finally (or one
of both), so using try by itself or attempting to use multiple catch blocks will result in
a syntax error. However, it is perfectly legal to have nested try/catch constructs, as in
the following:

try {

// some statements to try

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 827

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

828 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

try {

// some statements to try that might throw a different exception

} catch(theException) {

// perform exception handling for the inner try

}

} catch (theException) {

// perform exception handling for the outer try

}

Creating an instance of an Error does not cause the exception to be thrown. You
must explicitly throw it using the throw keyword. For example, with the following,

var myException = new Error("Couldn't handle the data");

throw myException;

the result in Netscape 6’s JavaScript Console is

In Internet Explorer 5.5 with debugging turned on, a similar error is reported.

You can throw any value you like, including primitive strings or numbers,
but creating and then throwing an Error instance is the preferable strategy.

To illustrate the basic use of exceptions, consider the computation of a numeric
value as a function of two arguments (mathematically inclined readers will recognize
this as an identity for sine(a + b)). Using previously discussed defensive programming
techniques we could explicitly type-check or convert the arguments to numeric values
in order to ensure a valid computation. We choose to perform type checking here using
exceptions (and assuming, for clarity, that the browser has already been determined to
support JavaScript exceptions):

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:56 PM

Color profile: Generic CMYK printer profile
Composite Default screen

function throwMyException(message)

{

var myException = new Error(message);

throw myException;

}

function sineOf(a, b)

{

var result;

try

{

if (typeof(a) != "number" || typeof(b) != "number")

throwMyException("The arguments to sineOf() must be numeric");

if (!isFinite(a) || !isFinite(b))

throwMyException("The arguments to sineOf() must be finite");

result = Math.sin(a) * Math.cos(b) + Math.cos(a) * Math.sin(b);

if (isNaN(result))

throwMyException("The result of the computation was not a number");

return result;

} catch (theException) {

alert("Incorrect invocation of sineOf() : " + theException.message);

}

}

Invoking this function correctly, for example,

var myValue = sineOf(1, .5);

returns the correct value, but an incorrect invocation:

var myValue = sineOf(1, ".5");

results in an exception, in this case:

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 829

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Exceptions in the real world
While exceptions will hopefully be the method of choice for notification of and
recovery from problematic conditions in the future, the reality is that they are not
well supported by today’s Web browsers. To accommodate the non-ECMAScript Error
properties of Internet Explorer 5 and Netscape 6, you will probably have to do some
sort of browser detection in order to extract useful information. While it might be
useful to have simple exception handling, such as:

try {

// do something IE or Netscape specific

} catch (theException) {

}

that is designed to mask the possible failure of an attempt to access proprietary
browser features, the real application of exceptions at the current moment is to Java
applets and the DOM.

By enclosing LiveConnect calls to applets and the invocation of DOM methods in
try/catch constructs, you can bring some of the robustness of more mature languages to
JavaScript. However, using exception handling in typical day-to-day scripting tasks is
probably still a few years in the future. For the time being, JavaScript’s exception handling
features are best used in situations where some guarantee can be made about client
capabilities—for example, by applying concepts from the following two sections.

Capability and Browser Detection
We’ve seen some examples of capability and browser detection throughout the
book, particularly in Chapter 17, and while we continue to assert that utilizing these
techniques is good defensive programming, there remain a few relevant issues to
discuss. To clarify terminology in preparation for this discussion, we define capability
detection as probing for support for a specific object, property, or method in the user’s
browser. For example, checking for document.all or document.getElementById would
constitute capability detection. We define browser detection as determining which browser,
version, and platform is currently in use. For example, parsing the navigator.userAgent
would constitute browser detection.

Often, capability detection is used to infer browser information. For example,
we might probe for document.layers and infer from its presence that the browser is
Netscape 4.x. The other direction holds as well: often capability assumptions are made
based upon browser detection. For example, the presence of “MSIE 5.5” and “Windows”
in the userAgent string might be used to infer the ability to use JavaScript’s exception
handling features.

When you step back and think about it, conclusions drawn from capability or
browser detection can easily turn out to be false. In the case of capability detection,
recall from Chapter 18 that the presence of navigator.plugins in no way guarantees

830 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

that a script can probe for support for a particular plugin. Internet Explorer does not
support plugin probing, but defines navigator.plugins[] anyway as a synonym for
document.embeds[]. Drawing conclusions from browser detection can be equally as
dangerous. Although Opera has the capability to masquerade as Mozilla or Internet
Explorer (by changing its userAgent string), both Mozilla and IE implement a host
of features not found in Opera.

While it is clear that there are some serious issues here that warrant consideration,
it is not clear exactly what to make of them. Instead of coming out in favor of one technique
over another, we list some of the pros and cons of each technique and suggest that a
combination of both capability and browser detection is appropriate for most applications.

The advantages of capability detection include:

■ You are free from writing tedious case-by-case code for various browser version
and platform combinations.

■ Users with third-party browsers or otherwise alternative browsers (such as
text browsers) will be able to take advantage of functionality that they would
otherwise be prevented from using because of an unrecognized userAgent
(or related) string.

■ Capability detection is “forward safe” in the sense that new browsers emerging
in the market will be supported without changing your code, so long as they
support the capabilities you utilize.

Disadvantages of capability detection include:

■ The appearance of a browser to support a particular capability in no way
guarantees that that capability functions the way you think it does. (Recall
navigator.plugins[] in Internet Explorer).

■ The support of one particular capability does not necessarily imply support
for related capabilities. For example, it is entirely possible to support
document.getElementById() but not support Style objects.

■ The task of verifying each capability you intend to use can be rather tedious.

The advantages of browser detection include:

■ Once you have determined the user’s browser correctly, you can infer support
for various features with relative confidence, without having to explicitly detect
each capability you intend to use.

The disadvantages of browser detection include:

■ Support for various features often varies widely across platforms, even in the
same version of the browser (for example, DHTML Behaviors are not supported
in MacOS, even in Internet Explorer 5.5).

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 831

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:57 PM

Color profile: Generic CMYK printer profile
Composite Default screen

■ You must write case-by-case code for each browser or class of browsers that
you intend to support. As new versions and browsers continue to hit the
market, this prospect looks less and less attractive.

■ Users with third-party browsers may be locked out of functionality their
browsers support simply by virtue of an unrecognized userAgent.

■ Browser detection is not necessarily “forward safe.” That is, if a new version
of a browser or an entirely new browser enters the market, you will in all
likelihood be required to modify your scripts to accommodate the new
userAgent.

■ There is no guarantee that a valid userAgent string will be transmitted.

While the advent of the DOM offers some hope for a simplification of these issues, it
will not solve all of these problems. First, DOM-compliant browsers are currently being
used by only a minority of the population. Second, DOM support in “DOM-compliant”
browsers can be rife with errors and inconsistencies. Third, the vast majority of scripts in
existence today are not written for the DOM, and it is unlikely that developer focus will
wholeheartedly shift to the DOM in the near future. And, finally, browser vendors such
as Microsoft bundle a very large number of proprietary features with the browser,
necessitating some sort of detection if they are to be used.

Although this outlook may seem pretty bleak, there are some general guidelines
you can follow. Support for proprietary features is probably best determined with
browser detection. This follows from the fact that such features are often difficult to
capability-detect properly and from the fact that you can fairly easily determine which
versions and platforms of a browser support the features in question. Standard features
are probably best detected using capabilities. This follows from the assumption that
support for standards is relatively useless unless the entire standard is implemented.
Additionally, it permits users with third-party standards-supporting browsers the use
of such features without the browser vendor having to control the market or have their
userAgent recognized.

These guidelines are not meant to be the final word in capability versus browser
detection. There are some obvious exceptions to the rules, notably that the proprietary
document.layers[] capability is an almost airtight guarantee that Netscape 4 is in use,
and therefore that layers are properly supported. Careful consideration of your project
requirements and prospective user base also factor into the equation in a very significant
way. Whatever your choice, it is important to bear in mind that there is another tool you
can add to your defensive programming arsenal for accomplishing the same task.

Code Hiding
Browsers are supposed to ignore the contents of <script> tags with language attributes
that they do not recognize. We can use this to our advantage by including a cascade of
<script>s in the document, each targeting a particular language version. The <script>

832 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

elements found earlier in the cascade target browsers with limited capabilities, while
those found later in sequence can target increasingly specific, more modern browsers.

The key idea is that there are two kinds of code hiding going on at the same time.
By enclosing later scripts with advanced functionality in elements with appropriate
language attributes (for example, “JavaScript1.5”), their code is hidden from more
primitive browsers because these scripts are simply ignored. At the same time, the
more primitive code can be hidden from more advanced browsers by replacing the
old definitions with new ones found in later tags.

To illustrate the concept more clearly, suppose we wanted to use some DHTML
code in the page when DHTML features are supported, but also want to degrade
gracefully to more primitive functionality when such support is absent. We might
use the following code, which redefines a writePage() function to include advanced
functionality, depending upon which version of the language the browser supports:

<script language="JavaScript">

<!--

function writePage()

{

// code to output primitive HTML and JavaScript for older browsers

}

// -->

</script>

<script language="JavaScript1.3">

<!--

function writePage()

{

// code to output more advanced HTML and JavaScript that utilizes DHTML

// or even the DOM

}

// -->

</script>

<script language="JavaScript">

<!--

writePage();

// write out the page according to which writePage is defined

// -->

</script>

Because more modern browsers will parse the second <script>, the original definition
of writePage() is hidden. Similarly, the second <script> will not be processed by older
browsers, because they do not recognize its language attribute.

If you keep in mind the guidelines for the language attributes given in Table 24-4,
you can use this technique to design surprisingly powerful cascades (as will be

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 833

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

demonstrated momentarily). Note that Opera 3 parses any <script> with its language
attribute beginning with “JavaScript.”

To glimpse the power that the language attribute affords us, suppose that you
wanted to include separate code for older browsers—Netscape 4, Netscape 6, and
Internet Explorer 4+. You could do so with the following:

<script language="JScript">

<!--

var isIE = true;

// set a flag so we can differentiate between Netscape and IE later on

// -->

</script>

<script language="JavaScript">

<!--

function myFunction()

{

// code to do something for older browsers

}

// --></script>

<script language="JavaScript1.2">

<!--

if (window.isIE)

{

function myFunction()

834 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

language
attribute Supported by

JScript All scriptable versions of Internet Explorer and Opera 5+

JavaScript All scriptable versions of Internet Explorer, Opera,
and Netscape

JavaScript1.1 Internet Explorer 4+, Opera 3+, and Netscape 3+

JavaScript1.2 Internet Explorer 4+, Opera 3+, and Netscape 4+

JavaScript1.3 Internet Explorer 5+, Opera 4+, and Netscape 4.06+

JavaScript1.5 Opera 5+ and Netscape 6+

Table 24-4. Support for Value of the language attribute

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

{

// code to do something specific for Internet Explorer 4+

}

}

else

{

function myFunction()

{

// code to do something specific for Netscape 4 and others

}

}

// -->

</script>

<script language="JavaScript1.5">

<!--

function myFunction()

{

// code to do something specific for Netscape 6 and Opera 5+

}

// -->

</script>

We’ve managed to define a cross-browser function, myFunction(), for four different
browsers using only the language attribute and a little ingenuity! Combined with some
simple browser detection, this technique can be very powerful indeed.

The language attribute is deprecated under HTML 4, so don’t expect your pages to
validate as strict HTML 4 or XHTML when using this trick. The upside is that all
modern browsers continue to support the attribute even though it is no longer officially
a part of the language.

Accommodating Old Browsers
In our exploration of code hiding so far, we have glossed over several important
issues that merit attention. First, you should keep in mind that the original purpose
of the language attribute was to hide code utilizing new language features from older
browsers. Therefore, you should make use of this feature whenever appropriate (and
not just for cross-browser scripting tricks).

Another important thing to remember is that browsers that are not script-aware
will display the contents of <script> tags as if they were HTML. Therefore, you should
always hide your JavaScript inside HTML comments. Doing so suppresses the messy
pages that can result from the JavaScript-as-HTML treatment that <script>s receive
in very old or text-mode browsers.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 835

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:58 PM

Color profile: Generic CMYK printer profile
Composite Default screen

And, finally, it is always good style to include <noscript>s for older browsers or
browsers in which JavaScript has been disabled. Each piece of code in this book should
properly have been followed by a <noscript> indicating that JavaScript is required or
giving alternative HTML functionality for the page. We omitted such <noscript>s in
most cases for the sake of brevity and clarity, but we would always include them in a
document that was live on the Web. We turn our attention now towards general
practices that are considered good coding style.

Coding Style
Because of the ease with which JavaScript can be used for a variety of tasks, developers
often neglect good coding style in the rush to implement. Doing so often comes back
to haunt them when later they are faced with mysterious bugs or code maintenance
tasks and cannot easily decipher the meaning or intent of their own code. Practicing
good coding habits can reduce such problems by bringing clarity and consistency to
your scripts.

While we have emphasized what constitutes good coding style throughout the book,
we summarize some of the key aspects in Table 24-5. We cannot stress enough how important
good style is when undertaking a large development project, but even for smaller projects
good style can make a serious difference. The only (possible) time you might wish to take
liberties with coding style is when compressing your scripts for speed.

836 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

Aspect of
JavaScript Recommendation

variable
identifiers

Use camel-back capitalization and descriptive names that give
an indication of what value the variable might be expected to
hold. Appropriate variable names are most often made up of
one or more nouns.

function
identifiers

Use the camel-back capitalization and descriptive names that
indicate what operation they carry out. Appropriate function
names are most often made up of one or more verbs.

variable
declarations

Avoid implicitly declared variables like the plague—they
clutter the global namespace and lead to confusion. Always
use var to declare your variables in the most specific scope
possible. Avoid global variables whenever possible.

Table 24-5. Recommended Good Coding Habits

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Speeding up Your Code
There are a variety of ways in which developers try to decrease the time it takes to
download and render their pages. The most obvious is crunching, which is the process
of removing excess whitespace in files (since it is collapsed or ignored by the browser
anyway) and replacing long identifiers with shorter ones. The assumption is that there
will be fewer characters to transfer from the server to the client, so download speed
should increase proportionally. There are many tools available on the Web that perform
crunching, and the capability is often packaged with commercial development studios
as well.

Another, better approach is to move the bulk of your code into external .js libraries.
Doing so permits the code to be cached by the browser, obviating the need to re-fetch
the same JavaScript that would otherwise be included inline in each page.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 837

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Aspect of
JavaScript Recommendation

functions Pass values that need to be modified by reference by wrapping
them in a composite type. Or, alternatively, return the new
value that the variable should take on. Avoid changing global
variables from inside functions. Declare functions in the
document <head> or in a linked .js library.

constructors Indicate that object constructors are such by capitalizing the
first letter of their identifier.

comments Use them. Liberally. Complex conditionals should always be
commented and so should functions.

indentation Indent each block two to five spaces further than the enclosing
block. Doing so gives visual cues as to nesting depth and the
relationship between constructs like if/else.

modularization Whenever possible, break your scripts up into externally
linked libraries. Doing so facilitates code reuse and eases
maintenance tasks.

semicolons Use them. Do not rely on implicit semicolon insertion.

Table 24-5. Recommended Good Coding Habits (continued)

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:46:59 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Protecting Your Code
If you are concerned with people stealing your scripts for use on their own sites, then
you probably should not be implementing them in JavaScript. Because of JavaScript’s
nature as an interpreted language included directly in HTML documents, your users
have unfettered access to your source code, at least in the current Web paradigm. While
you might be able to hide code from naïve users by placing it in externally linked .js
files, doing so will certainly not deter someone intent upon examining or “borrowing”
your code. Just because the JavaScript is not included inline in the page does not mean
that it is inaccessible. It is very easy to load an external .js library into a debugger or
to download it using a text-mode browser like Lynx. You can even telnet to port 80
of the Web server and issue an HTTP request for the file manually.

A partial solution is offered by code obfuscators, programs that read in JavaScript (or
a Web page) and output a functionally equivalent version of the code that is scrambled
(presumably) beyond recognition. Obfuscators are often included with crunchers, but
there are numerous standalone obfuscators available on the Web.

To illustrate the technique, we use an obfuscator on the following snippet of HTML
and JavaScript:

This is a secret link!

The result of obfuscation is

<script>var

enkripsi="$2B`$31isdg$2E$33$32$33$31nobmhbj$2E$33`mdsu$39$36On$31nod$31ltru$31jonv$

31uihr$31rdbsdu$30$36$38$33$2DUihr$31hr$31`$31rdbsdu$31mhoj$30$2B.`$2D"; teks="";

teksasli="";var panjang;panjang=enkripsi.length;for (i=0;i<panjang;i++){

teks+=String.fromCharCode(enkripsi.charCodeAt(i)^1)

}teksasli=unescape(teks);document.write(teksasli);</script>

This obfuscated code replaces the original code in your document and, believe it
or not, works entirely properly, as shown in Figure 24-8.

There are a few downsides with using obfuscated code. The first is that often the
obfuscation increases the size of the code substantially, so obscurity comes at the price
of size. Second, although code obfuscation might seem like an attractive route, you should
be aware that reversing obfuscation is always possible. A dedicated and clever adversary
will eventually be able to “undo” the obfuscation to obtain the original code (or a more
tidy functional equivalent) no matter what scrambling techniques you might apply.
Still, obfuscation can be a useful tool when you need to hide functionality from naïve
or unmotivated snoopers. It certainly is better than relying on external .js files alone.

838 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:47:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 839

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

Many developers refer to obfuscation as “encryption.” While doing so is likely to make a
cryptographer cringe, the term is in widespread use. It is often helpful to use “encryption”
instead of “obfuscation” when searching the Web for these kinds of tools.

Microsoft Script Engine 5+ comes with a feature that allows you to encrypt your scripts.
Encrypted scripts can be automatically decrypted and used by Internet Explorer 5+.
However, this technology is available only for Internet Explorer, so using it is not a
recommendable practice.

Paranoid developers might wish to move functionality that must be protected
at all costs into a more appropriate technology, perhaps a plugin, ActiveX control, or
Java applet. However, doing so doesn’t really solve the problem either, because both
binaries and bytecode are successfully reverse-engineered on a regular basis. It does,
however, put the code out of reach for the vast majority of Web users.

Probably the best solution is to accept the fact that people will probably peruse,
play with, and occasionally reuse parts of your code from time to time. If you feel
that you’ve been seriously burned, for example by someone who sells your code or
publishes it for profit, you are most likely protected by the copyright laws in your state,
province, or country. You should, however, obtain appropriate legal advice on this
issue. At the very least, you might wish to include a copyright notice in your scripts
and indicate the acceptable terms under which others can use your code.

Most JavaScript programmers take a very liberal attitude towards code sharing. This
might be the result of the fact that many people learn the language by reading others’
code, but, whatever the case, it is definitely true that the majority of JavaScript
programmers are happy to share code snippets and tips.

Figure 24-8. Obfuscated code works just like the original

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:47:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JavaScript’s Place on the Web
We began this book by listing some of the common uses for JavaScript on the Web.
Now that you know a lot more about the language’s capabilities and limitations, we
return to this topic to discuss JavaScript’s place on the Web in a bit more detail.

The rise of mobile code such as Java and JavaScript means that developers now
have a choice about where they wish the computation in Web applications to take
place. Functionality that was once the domain of CGI scripts can now be effectively
carried out at either the client or the server side of the Web. There are, however, some
natural guidelines for determining where functionality should be placed in order to
maximize the strengths of various technologies.

Server-side technology is most often appropriate for data-intensive tasks such
as content customization or database interaction. The reasons for this are numerous,
but they boil down to security issues, computational power, and bandwidth concerns.
Server machines typically have greater processing power than client machines and
can be more closely coupled to data sources than can arbitrary clients. Additionally,
well-founded security and privacy concerns dictate that access to a content database
is probably best achieved by the server rather than the client. Sensitive calculations
(especially in financial matters) should always be carried out on the server in order
to minimize the risks posed by subversive clients. It would be all too easy to save an
“e-commerce” JavaScript application to the local disk and modify its functionality to
induce unintended behavior. For example, the price of items or the calculation of sales
tax could be modified to give a malicious client the deal of the century. If you must
carry out e-commerce–related tasks in client-side JavaScript, it is absolutely essential
to include “sanity checking” on the server side to ensure that such malicious behavior
cannot occur.

Client-side technologies are most appropriate for non-critical enhancements, such
as form validation, minor document or presentation customizations, and creation of
navigational aids. The reason that these applications are most often found on the client
side is the close coupling of client-side technologies to Web documents themselves.
Client-side features are always available to the user and document (once it’s loaded in
the browser). Server-side features, on the other hand, are unavailable once the document
is sent from the server to the client (or, at the least, until the next request). It makes sense
that tasks involving a high degree of user interaction are best placed on the client side.
Form validation, presentation customization, and use of navigational aids are all tasks
that involve significant user interaction. Keeping them on the client speeds things up
by obviating the need for time-consuming communication with a server.

JavaScript fits into the server side of the Web by providing the means to automate
document generation prior to transmission to the user. It faces a number of related,
competing technologies such as Java servlets and other database-driven scripting
languages like PHP and ColdFusion. One major advantage of server-side JavaScript
over related technologies is the degree to which it is integrated with Windows and
Windows Internet Information Server.

840 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:47:00 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JavaScript fits into the client side of the Web as the language of choice for dynamic
examination, generation, and manipulation of Web pages. Tremendous browser support
and easy access to a page’s document object model make any other choice for such
tasks downright silly. While related technologies like plugins and ActiveX controls
can provide more power than JavaScript scripts, they do so at the cost of increased
separation from the browser and document objects and of decreased support.

JavaScript’s capabilities continue to increase at a pace more rapid than most developers
can keep up with. The W3C DOM facilities provide JavaScript with the unique position
of being the most easily used language for manipulation and interaction with XML.
JavaScript is also easy to learn and without a doubt, will continue to dominate the
client-side scripting market for a long time to come. There is simply no competition
even on the farthest horizon.

Summary
JavaScript syntax errors are those errors that result from code that does not conform
to the rules of the language. Scripts generally can’t recover from errors that introduce
such ambiguity. On the other hand, runtime errors are those errors that
occur as the result of attempting to utilize an unavailable resource—for example, the
document object model before the page has loaded or an undefined object, property,
method, or variable. Runtime errors can be caught on a Window-wide level in most
modern browser by utilizing that object’s onerror event handler. Runtime errors can
also be caught as a part of JavaScript’s more advanced exception-handling features.

Semantic errors occur when a JavaScript statement has an effect unintended by the
programmer. Typical debugging techniques such as turning on error messages and
outputting verbose status information can be used to track down logical errors, but
a better approach is to use a program designed specifically for the task, a debugger.
Defensive programming can help reduce both runtime and semantic errors.

Code hiding is an important aspect of defensive programming. Code hiding occurs
when JavaScript is hidden from a browser that is not able to handle it. Although often
carried out by utilizing the language attribute of the <script> element, it also occurs
in more straightforward ways—for example, by commenting out the contents of a
<script> to prevent old browsers from outputting the script as HTML.

An exception is a generalization of an error to include more benign and unexpected
conditions, such as those arising from incorrect data types or malfunctioning embedded
Java applets. Programmers can create and throw their own exceptions by instantiated
Error objects used in conjunction with the throw keyword. Exceptions are caught
(handled) using the try/catch construction, which permits the execution of a specific
block of code if an exception occurs while executing the try statements.

C h a p t e r 2 4 : J a v a S c r i p t P r a c t i c e s 841

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 24

R
EA

L
W

O
R

LD
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:47:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9
Blind Folio 842

P:\010Comp\CompRef8\127-9\ch24.vp
Tuesday, August 28, 2001 2:47:01 PM

Color profile: Generic CMYK printer profile
Composite Default screen

