
III
Fundamental Client-Side
JavaScript

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9
Blind Folio 1

CHAPTER 9
JavaScript Object Models

CHAPTER 10
The Standard Document
Object Model

CHAPTER 11
Event Handling

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6
Blind Folio 2

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

9
JavaScript Object Models

An object model defines the interface to the various aspects of the browser and the
document that can be manipulated by JavaScript. In JavaScript, there are a variety
of object models based upon browser type and version, but in general we see two

primary object models employed—a Browser Object Model and a Document Object Model
(DOM). The Browser Object Model provides access to the various characteristics of a browser
such as the browser window itself, the screen characteristics, the browser history, and so on.
The DOM, on the other hand, provides access to the contents of the browser window, namely
the document including the various (X)HTML elements, CSS properties, and any text items.

While it would seem clear, the unfortunate reality is that the division between the DOM and
the Browser Object Model is at times somewhat fuzzy and the exact document manipulation
capabilities of a particular browser’s implementation of JavaScript vary significantly. This
section starts our exploration of the use of the various aspects of JavaScript object models that
are fundamental to the proper use of the language. We begin this chapter with an exploration
of JavaScript’s initial object model and then examine the various additions made to the object
model by browser vendors. This apparent history lesson will uncover the significant problems
with the “DHTML” object models introduced by the browser vendors and still used by many
of today’s JavaScript programmers and will motivate the rise of the standard DOM model
promoted by the W3C, which is covered in the following chapter.

Object Model Overview
An object model is an interface describing the logical structure of an object and the standard
ways in which it can be manipulated. Figure 9-1 presents the “big picture” of all various
aspects of JavaScript including its object models. We see four primary pieces:

1. The core JavaScript language (e.g., data types, operators, statements, etc.)

2. The core objects primarily related to data types (e.g., Date, String, Math, etc.)

3. The browser objects (e.g., Window, Navigator, Location, etc.)

4. The document objects (e.g., Document, Form, Image, etc.)

Up until this point we have focused on primarily the first and second aspects of
JavaScript. This part of the language is actual fairly consistent between browser types

3

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9
Blind Folio 3

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

and versions, and corresponds to the features defined by the ECMAScript specification
(http://www.ecma-international.org/publications/standards/Ecma-262.htm). However, the
actual objects with which we can manipulate the browser and document do vary. In fact, in
Figure 9-1 you’ll notice that it appears that the Browser Object Model (BOM) and Document
Object Model (DOM) are somewhat intermixed. In previous versions of the browser there
really wasn’t much of a distinction between the Browser Object Model and the Document
Object Model—it was just one big mess.

By studying the history of JavaScript we can bring some order to the chaos of competing
object models. There have been four distinct object models used in JavaScript, including:

1) Traditional JavaScript object model (Netscape 2 and Internet Explorer 3)

2) Extended JavaScript object model (Netscape 3)—basis of DOM Level 0

4 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-1 The “big picture”

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

3) Dynamic HTML flavored object models

a. Internet Explorer 4.x and up

b. Netscape 4.x only

4) Extended Browser Object Model + Standard DOM (modern browsers)

We’ll look at each of these object models in turn and explain what features, as well
as problems, that each introduced. Fortunately, standards have emerged that have helped
to straighten this mess out, but it will take some time before JavaScript programmers can
safely let go of all browser-specific knowledge they have. Before we get into all that, let’s
go back to a much simpler time and study the first object model used by JavaScript, which
is safe to use in any JavaScript-aware browser.

The Initial JavaScript Object Model
If you recall the history of JavaScript presented in Chapter 1, the primary purpose of the
language at first was to check or manipulate the contents of forms before submitting them
to server-side programs. Because of these modest goals, the initial JavaScript object model
first introduced in Netscape 2 was rather limited and focused on the basic features of the
browser and document. Figure 9-2 presents JavaScript’s initial object model that is pretty
similar between Netscape 2 and Internet Explorer 3.

You might be curious how the various objects shown in Figure 9-2 are related to
JavaScript. Well, we’ve actually used them. For example, window defines the properties
and methods associated with a browser window. When we have used the JavaScript
statement:

L 9-1 alert("hi");

to create a small alert dialog, we actually invoked the alert() method of the Window object.
In fact, we could have just as easily written:

L 9-2 window.alert("hi");

to create the same window. Most of the time because we can infer that we are using the
current Window object, it is generally omitted.

The containment hierarchy shown in Figure 9-2 should also make sense once you
consider a statement like:

L 9-3 window.document.write("Hi there from JavaScript!");

This should look like the familiar output statement used to write text to an HTML
document. Once again we added in the prefix “window.” this time to show the hierarchy,
as we tended to use just document.write() in our examples. You might be curious about
what all the various objects shown in Figure 9-2 do, so in Table 9-1 we present a brief
overview of the traditional browser object. As you can see, the bulk of the objects are
contained within the Document object, so we’ll look at that one more closely now.

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 5

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

6 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-2 The initial JavaScript object model

Object Description

Window The object that relates to the current browser window.

Document An object that contains the various (X)HTML elements and text fragments that
make up a document. In the traditional JavaScript object model, the Document
object relates roughly to the <body> tag.

Frames[] An array of the frames if the Window object contains any. Each frame in turn
references another Window object that may also contain more frames.

History An object that contains the current window’s history list, namely the collection of
the various URLs visited by the user recently.

Location Contains the current location of the document being viewed in the form of a URL
and its constituent pieces.

Navigator An object that describes the basic characteristics of the browser, notably its type
and version.

TABLE 9-1 Overview of Core Browser Objects

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

The Document Object
The Document object provides access to page elements such as anchors, form fields, and links,
as well as page properties such as background and text color. We will see that the structure of
this object varies considerably from browser to browser, and from version to version. Tables 9-2
and 9-3 list those Document properties and methods, respectively, that are the “least common
denominator” and available since the very first JavaScript-aware browsers. For the sake of
brevity, some details and Document properties will be omitted in the following discussion.
Complete information about the Document properties can be found in Appendix B.

NOTEOTE The document.referrer attribute is spelled correctly despite the actual misspelling of the
HTTP referer header.

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 7

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

Document Property Description HTML Relationship

alinkColor The color of “active” links—by
default, red

<body alink=“color value”>

anchors[] Array of anchor objects in the
document

bgColor The page background color <body bgcolor=“color value”>

cookie String giving access to the page’s
cookies

N/A

fgColor The color of the document’s text <body text=“color value”>

forms[] Array containing the form elements
in the document

<form>

lastModified String containing the date the
document was last modified

N/A

links[] Array of links in the document linked content

linkColor The unvisited color of links—by
default, blue

<body link=“color value”>

location String containing URL of the
document. (Deprecated.) Use
document.URL or Location
object instead.

N/A

referrer String containing URL of the document
from which the current document was
accessed. (Broken in IE3 and IE4)

N/A

Title String containing the document’s title <title>Document Title</title>

URL String containing the URL of the
document

N/A

vlinkColor The color of visited links—by default,
purple

<body vlink=“color value”>

TABLE 9-2 Lowest Common Denominator Document Properties

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Examination of Tables 9-2 and 9-3 reveals that the early Document Object Model was very
primitive. In fact, the only parts of a document that can be directly accessed are document-
wide properties, links, anchors, and forms. There is no support for the manipulation of text
or images, no support for applets or embedded objects, and no way to access the presentation
properties of most elements. We’ll see all these capabilities are presented later but first let’s
focus on the most basic ideas. The following example shows the various document properties
printed for a sample document.

L 9-4 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Traditional Document Object Test</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<script type="text/javascript">
<!--
function showProps()
{
var i;

document.write("<h1 align='center'>Document Object Properties</h1><hr />
");
document.write("<h2>Basic Page Properties</h2>");
document.write("Location = "+document.location + "
");
document.write("URL = " + document.URL + "
");
document.write("Document Title = "+ document.title + "
");
document.write("Document Last Modification Date = " + document.lastModified +
"
");

document.write("<h2>Page Colors</h2>");
document.write("Background Color = " + document.bgColor + "
");
document.write("Text Color = " + document.fgColor + "
");
document.write("Link Color = " + document.linkColor +"
");
document.write("Active Link Color = " + document.alinkColor +"
");
document.write("Visited Link Color = " + document.vlinkColor + "
");
if (document.links.length > 0)
{
document.write("<h2>Links</h2>");
document.write("# Links = "+ document.links.length + "
");
for (i=0; i < document.links.length; i++)

document.write("Links["+i+"]=" + document.links[i] + "
");
}

8 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

Method Description

Close() Closes input stream to the document.

open() Opens the document for input.

Write() Writes the argument to the document.

writeln() Writes the arguments to the document followed by a newline.

TABLE 9-3 Lowest Common Denominator Document Methods

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

if (document.anchors.length > 0)
{
document.write("<h2>Anchors</h2>");
document.write("# Anchors = " + document.anchors.length + "
");
for (i=0; i < document.anchors.length; i++)

document.write("Anchors["+i+"]=" + document.anchors[i] + "
");
}

if (document.forms.length > 0)
{
document.write("<h2>Forms</h2>");
document.write("# Forms = " + document.forms.length + "
");
for (i=0; i < document.forms.length; i++)

document.write("Forms["+i+"]=" + document.forms[i].name + "
");
}

}
//-->
</script>
</head>
<body bgcolor="white" text="green" link="red" alink="#ffff00">
<h1 align="center">Test Document</h1>
<hr />
Sample link

Sample link 2
<form name="form1" action="#" method="get"></form>
<form name="form2" action="#" method="get"></form>
<hr />

<script type="text/javascript">
<!--
// Needs to be at the bottom of the page
showProps();

//-->
</script>
</body>
</html>

An example of the output of the previous example is shown in Figure 9-3.
One thing to note with this example, however, is the fact that many of the properties

will not be set if you do not run this with a document containing forms, links, and so on.
Notice the result of the same script on a document with the following simple <body>
contents shown in Figure 9-4.

L 9-5 <body>
<h1 align="center">Test 2 Document</h1>
<hr />
<script type="text/javascript">
<!--
// Needs to be at the bottom of the page
showProps();

//-->
</script>
</body>
</html>

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 9

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:10 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-3 Simple Document properties

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

JavaScript will not create, or more correctly in programming parlance instantiate, a
JavaScript object for an element that is not present. While you will notice that browsers tend
to define default values for certain types of properties such as text and link colors regardless
of the presence of certain (X)HTML elements or attributes, we do not have Form objects,
Anchor objects, or Link objects in the second example because we lacked <form> and
<a> tags in the tested document. It should be very clear that the (X)HTML elements
have corresponding objects in the JavaScript Document object, and that is how the two
technologies interact. This last idea is the heart of the object model—the bridge between
the world of markup in the page and the programming ideas of JavaScript. We now explore
how to access and manipulate markup elements from JavaScript.

TIPIP Given the tight interrelationship between markup and JavaScript objects, it should be no
wonder that with bad (X)HTML markup you will often run into problems with your scripts.
You really need to know your (X)HTML despite what people might tell you if you want to be
an expert JavaScript programmer.

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 11

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-4 Some Document properties require no HTML elements.

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Document Elements by Position
As the browser reads an (X)HTML document, JavaScript objects are instantiated for all
elements that are scriptable. Initially, the number of markup elements that were scriptable
in browsers was limited, but with a modern browser it is possible to access any arbitrary
HTML element. However, for now let’s concentrate on the (X)HTML elements accessible
via the traditional JavaScript object model, particularly <form> and its related elements,
to keep things simple. For example, if we have a document like so:

L 9-6 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Simple Form</title>
</head>
<body>
<form action="#" method="get">
<input type="text" />

</form>

<form action="#" method="get">
<input type="text" />

<input type="text" />

</form>
</body>
</html>

using the traditional JavaScript object model, we can access the first <form> tag using:

L 9-7 window.document.forms[0]

To access the second <form> tag we would use:

L 9-8 window.document.forms[1]

However, accessing window.document.forms[5] or other values would cause a problem since
there are only two form objects instantiated by each of the <form> tags.

If we look again at Figure 9-2, notice that the forms[] collection also contains an elements[]
collection. This contains the various form fields like text fields, buttons, pull-downs, and so
on. Following the basic containment concept to reach the first form element in the first form
of the document, we would use:

L 9-9 window.document.forms[0].elements[0]

While this array-based access is straightforward, the major downside is that it relies
on the position of the (X)HTML tag in the document. If the tags are moved around, the
JavaScript might actually break. A better approach is to rely on the name of the object.

12 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Accessing Document Elements by Name
Markup elements in a Web page really should be named to allow scripting languages
to easily read and manipulate them. The basic way to attach a unique identifier to an
(X)HTML element is by using the id attribute. The id attribute is associated with nearly
every (X)HTML element. For example, to name a particular enclosed embolded piece of
text “SuperImportant,” you could use the markup shown here:

L 9-10 <b id="SuperImportant">This is very important.

Just like choosing unique variable names within JavaScript, naming tags in markup is
very important since these tags create objects within JavaScript. If you have name collisions in
your markup you are probably going to break your script. Web developers are encouraged to
adopt a consistent naming style and to avoid using potentially confusing names that include
the names of HTML elements themselves. For example, button does not make a very good
name for a form button and will certainly lead to confusing code and may even interfere with
scripting language access.

Before the standardization of HTML 4 and XHTML 1, the name attribute was used to
expose items to scripting instead of id. For backward compatibility, the name attribute is
commonly defined for <a>, <applet>, <button>, <embed>, <form>, <frame>, <iframe>,
, <input>, <object>, <map>, <select>, and <textarea>. Notice that the occurrence of
the name attribute corresponds closely to the traditional Browser Object Model.

NOTEOTE Both <meta> and <param> support an attribute called name, but these have totally
different meanings beyond script access.

Page developers must be careful to use name where necessary to ensure backward
compatibility with older browsers. Even if this is not a concern to you, readers should not
be surprised to find that many modern browsers prefer the name attribute on tags that
support it. To be on the safe side, use name and id attributes on the tags that support
both and keep them the same value. So we would write:

L 9-11 <form name="myForm" id="myForm" method="get" action="#">
<input type="text" name="userName" id="userName" />

</form>

And then to access the form from JavaScript, we would use either:

L 9-12 window.document.myForm

or simply:

L 9-13 document.myForm

because the Window object can be assumed. The text field would be accessed in a
similar fashion by using document.myForm.userName.

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 13

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTEOTE Having matching name and id attribute values when both are defined is a good idea to
ensure backward browser compatibility. However, be careful—some tags, particularly radio
buttons, must have consistent names but varying id values. See Chapter 14 for examples of
this problem.

Accessing Objects Using Associate Arrays
Most of the arrays in the Document object are associative. That is, they can be indexed with
an integer as we have seen before or with a string denoting the name of the element you
wish to access. The name, as we have also seen, is assigned either with (X)HTML’s name
or id attribute for the tag. Of course, many older browsers will only recognize the setting
of an element’s name using the name attribute. Consider the following HTML:

L 9-14 <form name="myForm2" id="myForm2" method="get" action="#">
<input name="user" type="text" value="" />

</form>

You can access the form as document.forms[“myForm2”] or even use the elements[] array
of the Form object to access the field as document.forms[“myForm2”].elements[“user”]. Internet
Explorer generalizes these associative arrays a bit and calls them collections. Collections in
IE can be indexed with an integer, with a string, or using the special item() method mentioned
later in this chapter.

Event Handlers
Now that we have some idea of how to access page objects, we need to see how to monitor
these objects for user activity. The primary way in which scripts respond to user actions is
through event handlers. An event handler is JavaScript code associated with a particular part
of the document and a particular “event.” The code is executed if and when the given event
occurs at the part of the document to which it is associated. Common events include Click,
MouseOver, and MouseOut, which occur when the user clicks, places the mouse over,
or moves the mouse away from a portion of the document, respectively. These events are
commonly associated with form buttons, form fields, images, and links, and are used for
tasks like form field validation and rollover buttons. It is important to remember that not
every object is capable of handling every type of event. The events an object can handle are
largely a reflection of the way the object is most commonly used.

Setting Event Handlers
You have probably seen event handlers before in HTML. The following simple example
shows users an alert box when they click the button:

L 9-15 <form method="get" action="#">
<input type="button" value="Click me" onclick="alert('That tickles!');" />
</form>

The onclick attribute of the <input> tag is used to bind the given code to the button’s
Click event. Whenever the user clicks the button, the browser sends a Click event to the
Button object, causing it to invoke its onclick event handler.

How does the browser know where to find the object’s event handler? This is dictated
by the part of the Document Object Model known as the event model. An event model is

14 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

simply a set of interfaces and objects that enable this kind of event handling. In most major
browsers, an object’s event handlers are accessible as properties of the object itself. So instead
of using HTML to bind an event handler to an object, we can do it with pure JavaScript. The
following code is equivalent to the previous example:

L 9-16 <form name="myForm" id="myForm" method="get" action="#">
<input name="myButton" id="myButton" type="button" value="Click me" />
</form>
<script type="text/javascript">
<!--
document.myform.mybutton.onclick = new Function("alert('That tickles!')");
// -->
</script>

We define an anonymous function containing the code for the event handler, and then
set the button’s onclick property equal to it.

Invoking Event Handlers
You can cause an event to occur at an object just as easily as you can set its handler. Objects
have a method named after each event they can handle. For example, the Button object has
a click() method that causes its onclick handler to execute (or to “fire,” as many say). We
can easily cause the click event defined in the previous two examples to fire:

L 9-17 document.myForm.myButton.click();

There is obviously much more to event handlers than we have described here. Both major
browsers implement sophisticated event models that permit applications an extensive flexibility
when it comes to events. For example, if you have to define the same event handler for a large
number of objects, you can bind the handler once to an object higher up the hierarchy rather
than binding it to each child individually. A more complete discussion of event handlers is
found in Chapter 11.

Putting It All Together
Now that we have seen all the components of the traditional object model it is time to show
how all the components are used together. As we have seen previously, by using a tag’s
name or determining its position, it is fairly easy to reference an occurrence of an HTML
element that is exposed in the JavaScript object model. For example, given:

L 9-18 <form name="myForm" id="myForm">
<input type="text" name="userName" id="userName">
</form>

we would use:

L 9-19 document.myForm.userName

to access the field named userName in this form. But how do you manipulate that tag’s
properties? The key to understanding JavaScript’s object model is that generally (X)HTML

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 15

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

element’s attributes are exposed as JavaScript object properties. So given that a text field in
XHTML has the basic syntax of:

L 9-20 <input type="text" name="unique identifier" id="unique identifier"
size="number of characters" maxlength="number of characters"
value="default value" />

then given our last example, document.myForm.userName.type references the input field’s
type attribute value, in this case text, while document.myForm.userName.size references its
displayed screen size in characters, document.myForm.userName.value represents the value
typed in, and so on. The following simple example puts everything together and shows
how the contents of a form field are accessed and displayed dynamically in an alert window
by referencing the fields by name.

L 9-21 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Meet and Greet</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<script type="text/javascript">
<!--
function sayHello()
{
var theirname=document.myForm.userName.value;
if (theirname !="")
alert("Hello "+theirname+"!");

else
alert("Don't be shy.");

}
//-->
</script>
</head>
<body>
<form name="myForm" id="myForm" action="#" method="get">
What's your name?
<input type="text" name="userName" id="userName" size="20" />

<input type="button" value="Greet" onclick="sayHello();" />
</form>
</body>
</html>

Not only can we read the contents of page elements, particularly form fields, but we can
update their contents using JavaScript. Using form fields that are the most obvious candidates
for this, we modify the previous example to write our response to the user in another form field.

L 9-22 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Meet and Greet 2</title>

16 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
<script type="text/javascript">
<!--
function sayHello()
{
var theirname = document.myForm.userName.value;
if (theirname != "")
document.myForm.theResponse.value="Hello "+theirname+"!";

else
document.myForm.theResponse.value="Don't be shy.";

}
//-->
</script>
</head>
<body>
<form name="myForm" id="myForm" action="#" method="get">
What's your name?
<input type="text" name="userName" id="userName" size="20" />

Greeting:
<input type="text" name="theResponse" id="theResponse" size="40" />

<input type="button" value="Greet" onclick="sayHello();" />
</form>
</body>
</html>

The previous examples show how to access elements using the most traditional object
model following the containment hierarchy of window.document.collectionname where
collectioname is an array of JavaScript objects such as forms[], anchors[], links[] and so
on that correspond to (X)HTML markup elements. However, under modern browsers that
support the W3C DOM, we don’t necessarily have to follow this hierarchical style of access.
For example, given a tag like:

L 9-23 <p id="para1">Test paragraph</p>

we can use document.getElementById(“para1”) to access the <p> tag with id value of
“para1” directly rather than accessing it through some non-existent document.paragraphs[]
collection. Once we have accessed the tag we might set its attribute values as we did with
the <input> tag previously. For example:

L 9-24 var theTag;
theTag = document.getElementById("para1");
theTag.align="right";

would set the align attribute of the paragraph to a value of “right”. We could, of course, set any
attribute the paragraph tag supports and even change its CSS properties via its style attribute.

While direct access seems far superior to the hierarchical method, it hasn’t always been
available. So before concluding this chapter and jumping into the DOM in Chapter 10, we
briefly present the various Browser Object Models and how they have evolved over the
years. However, do not skip these sections or dismiss them as historical notes; these object

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 17

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

models and approach to JavaScript are still the coding style used by many JavaScript
developers, particularly those looking for backwards compatibility. Furthermore, the object
models presented (particularly Netscape 3) serve as the foundation of the DOM Level 0
specification, so they will live on far into the future.

The Object Models
So far the discussion has focused primarily on the generic features common to all Document
Object Models, regardless of browser version. Not surprisingly, every time a new version was
released, browser vendors extended the functionality of the Document object in various ways.
Bugs were fixed, access to a greater portion of the document was added, and the existing
functionality was continually improved upon.

The gradual evolution of Document Object Models is a good thing in the sense that more
recent object models allow you to carry out a wider variety of tasks more easily. However,
it also poses some major problems for Web developers. The biggest issue is that the object
models of different browsers evolved in different directions. New, proprietary tags were
added to facilitate the realization of Dynamic HTML (DHTML) and new, non-standard
means of carrying out various tasks became a part of both Internet Explorer and Netscape.
This means that the brand-new DHTML code a developer writes using the Netscape object
model probably will not work in Internet Explorer (and vice versa). Fortunately, as the use of
older browsers continues to dwindle and modern browsers improve their support for DOM
standards, we won’t have to know these differences forever and will be free to focus solely
on the ideas of Chapter 10. However, for now readers are encouraged to understand the object
models, and particular attention should be paid to the later Internet Explorer models, since
many developers favor it over DOM standards for better or worse.

Early Netscape Browsers
The object model of the first JavaScript browser, Netscape 2, is that of the basic object model
presented earlier in the chapter. It was the first browser to present such an interface to JavaScript
and its capabilities were limited. The main use of JavaScript in this browser because of its
limited object model is form validation and very simple page manipulation, such as printing
the last date of modification. Netscape 3’s Document object opened the door for the first
primitive DHTML-like applications. It exposes more of document content to scripts by
providing the ability to access embedded objects, applets, plug-ins, and images. This object
model is shown in Figure 9-5 and the major additions to the Document object are listed
in Table 9-4.

18 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

Property Description

applets[] Array of applets (<applet> tags) in the document

embeds[] Array of embedded objects (<embed> tags) in the document

images[] Array of images (tags) in the document

plugins[] Array of plug-ins in the document

TABLE 9-4 New Document Properties in Netscape 3

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTEOTE The Netscape 3 object model without the embeds[] and plugins[] collections is the core of
the DOM Level 0 standard and thus is quite important to know.

Arguably, for many Web developers the most important addition to the Document
object made by Netscape 3 was the inclusion of the images[] collection, which allowed for
the now ubiquitous rollover button discussed in Chapter 15.

Netscape 4’s DHTML-Oriented Object Model
The Document Object Model of version 4 browsers marks the point at which support for so-
called Dynamic HTML (DHTML) begins. Outside of swapping images in response to user

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 19

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-5 Netscape 3 object model

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

events, there was little one could do to bring Web pages alive before Netscape 4. Major
changes in this version include support for the proprietary <layer> tag, additions to
Netscape’s event model, and the addition of Style objects and the means to manipulate
them. Figure 9-6 shows the essentials of Netscape 4’s object model and the most interesting
new properties of the Document object are listed in Table 9-5.

While most of the aspects of the Netscape 4 object model are regulated to mere historical
footnotes in Web development, one aspect of this generation of browsers that continues to
plague developers is the proprietary Layer object.

20 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-6 Netscape 4 object model

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Netscape’s document.layers[]
Netscape 4 introduced a proprietary HTML tag, <layer>, which allowed developers to
define content areas that can be precisely positioned, moved, overlapped, and rendered
hidden, visible, or even transparent. It would seem that <layer> should be ignored since it
never made it into any W3C’s HTML standard, was never included by any competing browser
vendors, and it was quickly abandoned in the 6.x generation of Netscape. Yet its legacy lives
on for JavaScript developers who need to use the document.layers[] collection to access CSS
positioned <div> regions in Netscape 4. To this day many DHTML libraries and applications
support document.layers[] for better or for worse. As a quick example of Netscape 4’s Layer
object we present an example of hiding and revealing a CSS positioned region.

L 9-25 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">

<html>
<head>
<title>NS4 Layer Example</title>
<style type="text/css">
<!--
#div1 { position: absolute;

top: 200px;
left: 350px;
height: 100px;
width: 100px;
background-color: orange;}

-->
</style>
</head>
<body>
<h1 align="center">Netscape 4 Layer Example</h1>
<div id="div1">An example of a positioned region</div>
<form action="#" method="get">
<input type="button" value="hide"
onclick="document.layers['div1'].visibility='hide'">

<input type="button" value="show"

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 21

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

Property Description

classes Creates or accesses CSS style for HTML elements with class attributes set.
ids Creates or accesses CSS style for HTML elements with id attributes set.

layers[] Array of layers (<layer> tags or positioned <div> elements) in the document. If
indexed by an integer, the layers are ordered from back to front by z-index (where
z-index of 0 is the bottommost layer).

tags Creates or accesses CSS style for arbitrary HTML elements.

TABLE 9-5 New Document Properties in Netscape 4

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

onclick="document.layers['div1'].visibility='show'">
</form>
</body>
</html>

One wrinkle with this collection is that only the first level of nested layers is available
via document.layers[] because each layer receives its own Document object. To reach a nested
layer you must navigate to the outer layer, through its Document to the nested layer’s
layers[] array, and so on. For example, to reach a layer within a layer you might write:

L 9-26 var nestedLayer = document.layers[0].document.layers[0].document;

Although the use of the Layer object hopefully will be gone forever in the near future,
for backwards compatibility to Netscape 4.x generation browsers, they are required.
Chapter 15 presents a cross-browser DHTML library that will help address such problems
for interested readers.

Netscape 6, 7, and Mozilla
The release of Netscape 6 marked an exciting, but short era for Netscape browsers. While
ultimately the Netscape browser itself died off, the engine and browser it was based upon,
Mozilla, continues to live on in many forms. The main emphasis of this browser family is
standards compliance, a refreshing change from the ad hoc proprietary Document Object
Models of the past. It is backwards compatible with the so-called DOM Level 0, the W3C’s
DOM standard that incorporates many of the widespread features of older Document
Object Models, in particular that of Netscape 3. However, it also implements DOM Level 1
and parts of DOM Level 2, the W3C’s object models for standard HTML, XML, CSS, and
events. These standard models differ in significant ways from older models, and are
covered in detail in the following chapter.

Support for nearly all of the proprietary extensions supported by older browsers like
Netscape 4, most notably the <layer> tag and corresponding JavaScript object, have been
dropped since Netscape 6. This breaks the paradigm that allowed developers to program
for older browser versions knowing that such code will be supported by newer versions.
Like many aspects of document models, this is both good and bad. Older code may not
work in Netscape/Mozilla-based browsers, but future code written towards this browser will
have a solid standards foundation. Readers unfamiliar with the Mozilla (www.mozilla.org)
family of browsers are encouraged to take a look as they may find new and exciting changes
as well as the opportunity to safely test many of the emerging W3C markup, CSS, and DOM
standards discussed in Chapter 10.

Internet Explorer 3
The object model of IE3 is the basic “lowest common denominator” object model presented
at the beginning of this chapter. It includes several “extra” properties in the Document
object not included in Netscape 2, for example, the frames[] array, but for the most part it
corresponds closely to the model of Netscape 2. The Internet Explorer 3 object model is
shown in Figure 9-7.

For the short period of time when Netscape 2 and IE3 coexisted as the latest versions of the
respective browsers, object models were in a comfortable state of unity. It wouldn’t last long.

22 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Internet Explorer 4’s DHTML Object Model
Like version 4 of Netscape’s browser, IE4 lays the foundations for DHTML applications by
exposing much more of the page to JavaScript. In fact, it goes much further than Netscape 4
by representing every HTML element as an object. Unfortunately, it does so in a manner
incompatible with Netscape 4’s object model. The basic object model of Internet Explorer 4
is shown in Figure 9-8.

Inspection of Figure 9-8 reveals that IE4 supports the basic object model of Netscape 2
and IE3, plus most of the features of Netscape 3 as well many of its own features. Table 9-6
lists some important new properties found in IE4. You will notice that Figure 9-9 and Table
9-6 show that IE4 also implements new document object features radically different from
those present in Netscape 4. It is in version 4 of the two major browsers where the object
models begin their radical divergence.

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 23

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-7 Internet Explorer 3 object model basically mimics Netscape 2.

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

IE’s document.all[]
One of the most important new JavaScript features introduced in IE4 is the document.all
collection. This array provides access to every element in the document. It can be indexed
in a variety of ways and returns a collection of objects matching the index, id, or name
attribute provided. For example:

L 9-27 // sets variable to the fourth element in the document
var theElement = document.all[3];

24 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-8 Internet Explorer 4 object model

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 25

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

FIGURE 9-9 IE’s document.all collection exposes all document elements.

Property Description

all[] Array of all HTML tags in the document

applets[] Array of all applets (<applet> tags) in the document

children[] Array of all child elements of the object

embeds[] Array of embedded objects (<embed> tags) in the document

images[] Array of images (tags) in the document

scripts[] Array of scripts (<script> tags) in the document

styleSheets[] Array of Style objects (<style> tags) in the document

TABLE 9-6 New Document Properties in Internet Explorer 4

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

// finds tag with id or name = myHeading
var myHeading = document.all["myHeading"];

// alternative way to find tag with id or name = myHeading
var myHeading = document.all.item("myHeading");

// returns array of all tags
var allEm = document.all.tags("EM");

As you can see, there are many ways to access the elements of a page, but regardless
of the method used, the primary effect of the document.all collection is that it flattens the
document object hierarchy to allow quick and easy access to any portion of an HTML
document. The following simple example shows that Internet Explorer truly does expose
all the elements in a page; its result is shown in Figure 9-9.

L 9-28 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Document.All Example</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body>
<h1>Example Heading</h1>
<hr />
<p>This is a paragraph. It is only a paragraph.</p>
<p>Yet another paragraph.</p>
<p>This final paragraph has <em id="special">special emphasis.</p>
<hr />
<script type="text/javascript">
<!--
var i,origLength;
origLength = document.all.length;
document.write('document.all.length='+origLength+"
");
for (i = 0; i < origLength; i++)
{
document.write("document.all["+i+"]="+document.all[i].tagName+"
");

}
// -->
</script>
</body>
</html>

NOTEOTE The previous example will result in an endless loop if you do not use the origLength variable
and rely on the document.all.length as your loop check. The reason is that the number of
elements in the document.all[] collection will grow every time you output the element you
are checking!

‘Once a particular element has been referenced using the document.all syntax, you will
find a variety of properties and methods associated with it, including the all property itself,
which references any tags enclosed within the returned tag. Tables 9-7 and 9-8 show some of

26 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

the more interesting, but certainly not all of these new properties and methods. Note that
inline elements will not have certain properties (like innerHTML) because by definition their
tags cannot enclose any other content.

If Tables 9-7 and 9-8 seem overwhelming, do not worry. At this point you are not expected
to fully understand each of these properties and methods. Rather, we list them to illustrate
just how far the Netscape and Internet Explorer object models diverged in a very short period
of time. We’ll cover the DOM-related properties IE supported in the next chapter as well as
a few of the more useful proprietary features. The balance will be covered in Chapter 21 and
Appendix B.

However, even brief examination of the features available in Internet Explorer should
reveal that this is the first browser where real dynamic HTML is possible, providing the
means to manipulate style dynamically and to insert, modify, and delete arbitrary markup

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 27

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

Property Description

all[] Collection of all elements contained by the object.

children[] Collection of elements that are direct descendents of the object.

className String containing the CSS class of the object.

innerHTML String containing the HTML content enclosed by, but not including, the
object’s tags. This property is writeable for most HTML elements.

innerText String containing the text content enclosed by the object’s tags. This
property is writeable for most HTML elements.

outerHTML String containing the HTML content of the element, including its start and
end tags. This property is writeable for most HTML elements.

outerText String containing the outer text content of the element. This property is
writeable for most HTML elements.

parentElement Reference to the object’s parent in the object hierarchy.

style Style object containing CSS properties of the object.

tagName String containing the name of the HTML tag associated with the object.

FIGURE 9-10 Some New Properties for Document Model Objects in IE4

Method Description

click() Simulates clicking the object causing the onClick event handler to fire

getAttribute() Retrieves the argument HTML attribute for the element

insertAdjacentHTML() Allows the insertion of HTML before, after, or inside the element

insertAdjacentText() Allows the insertion of text before, after, or inside the element

removeAttribute() Deletes the argument HTML attribute from the element

setAttribute() Sets the argument HTML attribute for the element

FIGURE 9-4 Some New Methods for Document Model Objects in IE4

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

and text. For the first time JavaScript can manipulate the structure of the document, changing
content and presentation of all aspects of the page at will. The following example illustrates
this idea using Internet Explorer–specific syntax.

L 9-29 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Document.All Example #2</title>
<meta http-equiv="content-type" content="text/html; charset=ISO-8859-1" />
</head>
<body>
<!-- Works in Internet Explorer and compatible -->
<h1 id="heading1" align="center" style="font-size: larger;">DHTML Fun!!!</h1>

<form name="testform" id="testform" action="#" method="get">

<input type="button" value="Align Left"
onclick="document.all['heading1'].align='left';" />

<input type="button" value="Align Center"
onclick="document.all['heading1'].align='center';" />

<input type="button" value="Align Right"
onclick="document.all['heading1'].align='right';" />

<input type="button" value="Bigger"
onclick="document.all['heading1'].style.fontSize='xx-large';" />

<input type="button" value="Smaller"
onclick="document.all['heading1'].style.fontSize='xx-small';" />

<input type="button" value="Red"
onclick="document.all['heading1'].style.color='red';" />

<input type="button" value="Blue"
onclick="document.all['heading1'].style.color='blue';" />

<input type="button" value="Black"
onclick="document.all['heading1'].style.color='black';" />

<input type="text" name="userText" id="userText" size="30" />
<input type="button" value="Change Text"
onclick="document.all['heading1'].innerText=document.testform.userText.value;" />

</form>
</body>
</html>

The previous examples given here barely scratch the surface of IE’s powerful Document
Object Model that started first with Internet Explorer 4 and only increased in capability in
later releases.

Internet Explorer 5, 5.5, and 6
The Document Object Model of Internet Explorer 5.x and 6.x is very similar to that of
IE4. New features include an explosive rise in the number of properties and methods
available in the objects of the document model and proprietary enhancements allowing
the development of reusable DHTML components. Internet Explorer 5.5 continued the

28 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

trend of new features and by Internet Explorer 6 we see that IE implements significant
portions of the W3C DOM. However, oftentimes developers may find that to make IE6
more standards-compliant they must be careful to “switch on” the standards mode by
including a valid DOCTYPE. Yet even when enabled, the IE5/5.5/6 implementation
is simply not a 100 percent complete implementation of the W3C DOM and there are
numerous proprietary objects, properties, and methods that are built around the existing
IE4 object model. Furthermore, given the browser’s dominant position, many of its ideas
like document.all and innerHTML seem to be more accepted by developers than
standard’s proponents would care to admit.

Opera, Safari, Konqueror, and Other Browsers
Although rarely considered by some Web developers, there are some other browsers that
have a small but loyal following in many tech-savvy circles. Most third-party browsers are
“strict standards” implementations, meaning that they implement W3C and ECMA
standards and ignore most of the proprietary object models of Internet Explorer and
Netscape. Most provide support for the traditional JavaScript object model and embrace
the fact that Internet Explorer–style JavaScript is commonplace on the Web. However, at
their heart the alternative browsers focus their development efforts on the W3C standards.
If the demographic for your Web site includes users likely to use less common browsers,
such as Linux aficionados, it might be a good idea to avoid IE-specific features and use the
W3C DOM instead.

The Nightmare of Cross-Browser Object Support
The common framework of the Document object shared by Internet Explorer and Netscape
dates back to 1996. It might be hard to believe, but in the intervening years there has been
only modest improvement to the parts of the Document Object Model the major browsers
have in common. As a result, when faced with a non-trivial JavaScript task, Web developers
have become accustomed to writing separate scripts, one for Internet Explorer 4+ and one
for other browsers like Netscape. Now with the rise of the W3C DOM standard you will
often see three different code forks for full compatibility. It should be clear that the situation
with competing object models is less than optimal. For those unconvinced, take a look at
Chapter 15 and see what it takes to perform simple visual effects across browsers. The Web
development community is ripe for change and the W3C Document Object Model provides
the platform- and language-neutral interface that will allow programs and scripts to
dynamically access and update the content, structure, and style of documents, both HTML
and XML. If browser vendors continue to improve their support for the W3C DOM, there
might be a point in the future where Web developers have access to a powerful, robust,
and standardized interface for the manipulation of structured documents, but for now the
platform lessons of this chapter are ignored at the reader’s peril.

Summary
This chapter gives a basic introduction to the traditional Document Object Models. The
traditional Document object is structured as a containment hierarchy and accessed by
“navigating” through general objects to those that are more specific. Most useful Document

C h a p t e r 9 : J a v a S c r i p t O b j e c t M o d e l s 29

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

properties are found in associative arrays like images[], which can be indexed by an integer
or name when an element is named using an HTML tag’s name or id attribute. Event
handlers were introduced as a means to react to user events and may be set with JavaScript
or traditional HTML. The chapter also introduced the specific Document Object Models of
the major browsers. The early browsers such as Netscape 2/3 and Internet Explorer 3
implemented the object model that is the basis of the DOM Level 0. However, the following
4.x generation browsers introduced some powerful “DHTML” features that were highly
incompatible and have led some Web developers to embrace proprietary features. While the
chapter clearly illustrated the divergent and incompatible nature of different Browser Object
Models, it should not suggest this is the way things should be. Instead the W3C DOM
should be embraced as it provides the way out of the cross-browser mess that plagues
JavaScript developers. The next chapter explains the details of the W3C DOM and why
it should revolutionize the way scripts manipulate documents.

30 P a r t I I I : F u n d a m e n t a l C l i e n t - S i d e J a v a S c r i p t

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 9

P:\010Comp\CompRef8\357-6\ch09.vp
Thursday, May 20, 2004 11:07:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

