
Part III
Fundamental Client-Side JavaScript

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9
Blind Folio 251

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9
Blind Folio 252

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:45 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 9
Traditional JavaScript
Object Models

253

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

254 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

An object model defines the interface to the various aspects of the browser and
the document that can be manipulated by JavaScript. In JavaScript, two primary
object models are employed—a Browser Object Model (BOM) and a Document

Object Model (DOM). The BOM provides access to the various characteristics of a
browser, such as the browser window itself, the screen characteristics, the browser
history, and so on. The DOM, on the other hand, provides access to the contents of the
browser window—namely the document and including the various HTML elements,
ranging from anchors to images as well as any text that may be enclosed by such elements.
Unfortunately, the division between the DOM and the BOM is at times somewhat
fuzzy, and the exact document-manipulation capabilities of different browsers’
implementations of JavaScript vary significantly. This section begins our exploration
of the use of the various aspects of JavaScript object models that are fundamental to the
effective use of the language. We’ll begin with an exploration of the traditional, though
nonstandardized, object models found in the two major browsers. We’ll find that many
of the ideas of what is related to the browser and what is related to the document are
mixed up in these models. The next chapter will begin our discussion of the W3C
standard Document Object Model that provides a standard way to manipulate HTML
(or even XML) documents for a variety of languages, including JavaScript. Finally,
we will explore the various event models supported by the browser vendors. Readers
are encouraged to study these next few chapters carefully, as a complete understanding
of the evolution and capabilities of the various object models discussed here is
fundamental to understanding the applications found in Part IV of the book.

Object Model Overview
An object model is an interface describing the logical structure of an object and the
standard ways in which it can be manipulated. Figure 9-1 presents the “big picture” of all
the various aspects of JavaScript, including its object models. There are four primary pieces:

1. The core JavaScript language (data types, operators, statements, and so on)

2. The core objects primarily related to data types (Date, String, Math, and so on)

3. The browser objects (Window, Navigator, Location, and so on)

4. The document objects (Document, Form, Image, and so on)

Up until this point we have focused on primarily the first and second aspects of
JavaScript. This part of the language is actually fairly consistent between browser types
and versions and corresponds to the features defined by the ECMAScript specification
(http://www.ecma.ch/ecma1/STAND/ECMA-262.HTM). However, the actual objects
with which we can manipulate the browser and document do vary. In Figure 9-1
you’ll notice that the Browser Object Model (BOM) and Document Object Model
(DOM) appear somewhat intermixed. In fact, in older browser versions there really
wasn’t much of a distinction between the Browser Object Model and the Document
Object Model—it was just one big mess!

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 255

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

By studying the history of JavaScript, we can bring some order to the chaos of
competing object models. There have been four distinct object models used in JavaScript:

■ Traditional JavaScript Object Model (Netscape 2 and Internet Explorer 3)

■ Extended Traditional JavaScript Object Model (Netscape 3)

■ Dynamic HTML-Flavored Object Models

■ Internet Explorer 4

■ Netscape 4

■ Traditional Browser Object Model + Standard DOM (NS6 and IE 5)

Figure 9-1. JavaScript: The “Big Picture”

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

256 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

We’ll look at each of these object models in turn and explain what features as well
as problems each introduced. Fortunately, today standards have begun to emerge that
have helped straighten this mess out, but it will take some time before JavaScript
programmers can safely let go of all browser-specific knowledge they have. Before we
get into all that, let’s go back to a much simpler time and study the traditional object
model that is safe to use in any JavaScript-aware browser.

The Traditional JavaScript Object Model
If you recall the history of JavaScript presented in Chapter 1, one of the primary purposes
of the language at first was to check or manipulate the contents of forms before submitting
them to server-side programs. Because of these modest goals, the initial JavaScript
object model first introduced in Netscape 2 was rather limited, and it focused on the
basic features of the browser and document. Figure 9-2 presents the traditional object
model, which is pretty similar in both Netscape 2 and Internet Explorer 3.

You might be curious how the various objects shown in Figure 9-2 are related
to JavaScript. Well, we’ve actually used them. For example, Window defines the
properties and methods associated with a browser window. When we used the
JavaScript statement

alert("hi");

to create a small alert dialog, we actually invoked the alert() method of the Window
object. In fact, we could have just as easily written

window.alert("hi");

to create the same window. The “window” prefix is generally omitted, because most
of the time the interpreter can infer that we are using the current Window object.
More specifically, the Window object is almost always within the scope of your scripts.
This means that the interpreter always checks the Window object for identifiers (for
example, function names) that are used without being explicitly defined in the script.

The containment hierarchy shown in Figure 9-2 should also make sense once you
consider a statement like this:

window.document.write("Hi there from JavaScript!");

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 257

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

This should look like the familiar output statement used to write text to an HTML
document. Once again, we added in the “prefix window,” this time to call attention to
the hierarchy, as we have tended to use just document.write() in our examples. You
might be curious about what all the various objects shown in Figure 9-2 do, so in
Table 9-1 we present an overview of the traditional browser objects. The bulk of the objects
are contained within the Document object, so we’ll look at that more closely now.

Figure 9-2. The traditional JavaScript object model

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

258 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

The Document Object
The Document object provides access to page elements such as anchors, form fields,
and links as well as page properties such as background and text color. We will see
that the structure of this object varies considerably from browser to browser and from
version to version. Table 9-2 and Table 9-3 list those Document properties and methods,
respectively, that are the “least common denominator” for the earliest browsers providing
a document object model (Netscape 2.0 and Internet Explorer 3.0). For the sake of brevity,
some details and Document properties will be omitted in the following discussion.
Complete information about the Document properties can be found in Appendix B.

An examination of Tables 9-2 and 9-3 reveals that the early object model was very
primitive. The only parts of a document that could be directly accessed were document-
wide properties, links, anchors, and forms. There was no support for the manipulation
of text or images, no support for applets or embedded objects, and no way to access

Object Description

Window The object that relates to the current browser window.

Document An object that contains the various HTML elements and
text fragments that make up a document. In the traditional
JavaScript object model, the Document object relates
roughly to the HTML <body> tag.

Frames[] An array of the frames in the page (if it contains any). Each
frame in turn references another Window object that may
also contain more frames.

History An object that contains the current window’s history list,
namely the collection of the various URLs visited by the
user recently.

Location An object that contains the current location of the document
being viewed in the form of a URL and its constituent pieces
such as protocols, host names, and paths.

Navigator An object that describes the basic characteristics of the
browser, notably its type and version.

Table 9-1. Overview of Core Browser Objects

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 259

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Document
Property Description HTML Relationship

Writeable
in NS?

Writeable
in IE?

alinkColor The color of “active”
links—by default red

<body alink=“color value”> Only in
NS6+

Yes

anchors[] Array of anchor objects
in the document

 No No

bgColor The page background
color

<body bgcolor=“color value”> Yes Yes

cookie String giving access to
the cookies the browser
has for the page

n/a Yes Yes

fgColor The color of the
document’s text

<body text=“color value”> Only in
NS6+

Yes

forms[] Array containing the
form elements in the
document

<form> No No

lastModified String containing the
date the document was
last modified

n/a No No

links[] Array of links in the
document

linked content No No

linkColor The color of unvisited
links—by default blue

<body link=“color value”> Only in
NS6+

Yes

location String containing
URL of the document
(deprecated: use
document.URL or the
Location object instead)

n/a Only in
NS6+

Yes

referrer String containing URL
of the document from
which the current
document was accessed
(broken in IE3 and IE4)

n/a No No

title String containing the
document’s title

<title>Document Title</title> Only in
NS6+

Only in
IE4+

URL String containing the
URL of the document

n/a No Yes

vlinkColor The color of visited
links—by default purple
or dark blue

<body vlink=“color value”> Only in
NS6+

Yes

Table 9-2. Lowest Common Denominator Document Properties

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

260 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

the presentation properties of most elements. An example showing the various
Document properties printed for a sample document is presented here:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Traditional Document Object Test</title>

<script language="JavaScript" type="text/javascript">

<!--

function showProps()

{

var i;

document.write("<h1 align='center'>Document Object Properties</h1><hr>
");

document.write("<h2>Basic Page Properties</h2>");

document.write("Location = "+document.location + "
");

document.write("UR L = " + document.URL + "
");

document.write("Document Title = "+ document.title + "
");

document.write("Document Last Modification Dat e = " + document.lastModified + "
");

document.write("<h2>Page Colors</h2>");

document.write("Background Colo r = " + document.bgColor + "
");

document.write("Text Colo r = " + document.fgColor + "
");

document.write("Link Colo r = " + document.linkColor +"
");

document.write("Active Link Colo r = " + document.alinkColor +"
");

Method Description

close() Closes input stream to the document

open() Opens the document for input

write() Writes the argument to the document

writeln() Writes the arguments to the document followed by a newline

Table 9-3. Lowest Common Denominator Document Methods

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 261

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

document.write("Visited Link Colo r = " + document.vlinkColor + "
");

if (document.links.length > 0)

{

document.write("<h2>Links</h2>");

document.write("# Links = "+ document.links.length + "
");

for (i=0 ; i < document.links.length; i++)

document.write("Links["+i+"]=" + document.links[i] + "
");

}

if (document.anchors.length > 0)

{

document.write("<h2>Anchors</h2>");

document.write("# Anchor s = " + document.anchors.length + "
");

for (i=0 ; i < document.anchors.length; i++)

document.write("Anchors["+i+"]=" + document.anchors[i] + "
");

}

if (document.forms.length > 0)

{

document.write("<h2>Forms</h2>");

document.write("# Form s = " + document.forms.length + "
");

for (i=0 ; i < document.forms.length; i++)

document.write("Forms["+i+"]=" + document.forms[i].name + "
");

}

}

//-->

</script>

</head>

<body bgcolor="white" text="green" link="red" alink="#ffff00">

<h1 align="center">Test Document</h1>

<hr>

Sample link

Sample link 2

<form name="form1"></form>

<form name="form2"></form>

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

<hr>

<script>

<!--

//-->

</script>

</body>

</html>

An example of the output of the previous example is shown in Figure 9-3.
One thing to note, about this example is that many of the properties will not

be set if you do not run this with a document containing forms, links, and so on.
Notice the result of the same script on a document with the following simple
<body> contents:

<body>

<h1 align="center">Test 2 Document</h1>

<hr>

<script>

<!--

//-->

</script>

</body>

</html>

JavaScript will not instantiate an object for an element that is not present, so notice that
you do not have nearly as many properties to view as shown in Figure 9-4. However, you
will notice that browsers will tend to define default values for certain types of properties,
such as text and link colors, regardless of the presence of HTML elements or attributes.

Although it might not be obvious at first glance, the Document object is set up as
a containment hierarchy. Such a hierarchy is induced by the placement of more specific
objects “inside” more general objects. Notice how document-wide properties like link
color are available within the Document object itself, but to examine form elements one
must first access the forms[] array found inside of the Document object. This sort of
containment is characteristic of document object models and is carried to its logical
conclusion by later models that present the document as a “tree” reflecting the
structure of the original HTML.

262 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 263

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Figure 9-3. Simple Document properties

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

264 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Accessing Document Elements by Position
When the browser reads an HTML document, JavaScript objects are instantiated for all
HTML elements that are scriptable. The number of HTML elements that are scriptable in
the first few browsers was fairly limited, but we’ll see that in later browsers it is possible
to access arbitrary HTML elements. For now, however, let’s concentrate on the HTML
elements accessible via the traditional JavaScript object model which include anchors,
links, forms, and form elements. For example, consider an HTML document like this:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

Figure 9-4. Some Document properties require no HTML elements.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 265

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

<html>

<head>

<title>Simple Form</title>

</head>

<body>

<form>

<input type="text">

</form>

<form>

<input type="text">

<input type="text">

</form>

</body>

</html>

Using the traditional JavaScript object model, we can access the first <form> tag using

window.document.forms[0]

To access the second <form> tag, we would use

window.document.forms[1]

As there are no more <form> tags in the document, accessing window.document.forms[5] or
other values would cause a problem.

If we look again at Figure 9-2, notice that the forms[] collection also contains an
elements[] collection. This collection contains the various form fields, like text fields,
buttons, pull-downs, and so on. Following the basic containment concept, in order to
reach the first form element in the first form of the document we would use

window.document.forms[0].elements[0]

While this array-based access is straightforward, the major downside is that it relies
on the position of the HTML tag in the document. If the tags are moved around, the
JavaScript might actually break. A better approach is to rely on the name of the object.

P:\010Comp\CompRef8\127-9\ch09.vp
Wednesday, August 29, 2001 10:18:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Accessing Document Elements by Name
HTML elements in a Web page really should be named to allow scripting languages
to easily read and manipulate them. The basic way to attach a unique identifier to an
HTML element under HTML 4 is by using the id attribute. The id attribute is associated
with nearly every HTML element.

The point of the id attribute is to bind a unique identifier to the element. To name a
particular enclosed bolded piece of text “SuperImportant,” you could use the markup
shown here:

<b id="SuperImportant">This is very important.

Just like choosing unique variable names within JavaScript, HTML naming is very
important. HTML document authors are encouraged to adopt a consistent naming
style and to avoid using potentially confusing names that include the names of HTML
elements themselves. For example, button does not make a very good name for a form
button and will certainly lead to confusion in code and may even interfere with
scripting language access.

Before HTML 4, the name attribute was used instead of id to expose items to
scripting. For backward compatibility, the name attribute is commonly defined for
<a>, <applet>, <button>, <embed>, <form>, <frame>, <iframe>, , <input>,
<object>, <map>, <select>, and <textarea>. Notice that the occurrence of the name
attribute corresponds closely to the traditional Browser Object Model.

Both <meta> and <param> support attributes called name, but these have totally
different meanings.

Page developers must be careful to use name where necessary to ensure backward
compatibility with older browsers. Earlier browsers will not recognize the id attribute,
so use name as well. For example, would be
interpreted, it is hoped, both by older script-aware browsers as well as by the latest
standards-supporting browser.

There are some statements in standards documentation that suggest that it is not a good
idea to set the name and id attributes to the same value, but practice shows this appears
to be the only way to ensure backward browser-compatibility.

To access the form defined by

<form name="myform" id="myform">

<input type="text" name="username" id="username">

</form>

266 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 267

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

by name in JavaScript, use either

window.document.myform

or simply

document.myform

because the Window object can be assumed. The field and its value can be accessed in
a similar fashion. To access the text field, use document.myform.username.

Accessing Objects Using Associative Arrays
Most of the arrays in the Document object are associative. That is, they can be indexed
with an integer, as we have seen, or with a string denoting the name of the element
you wish to access. The name, as we have also seen, is assigned either with HTML’s
name or id attribute for the tag. Of course many older browsers will only recognize the
setting of an element’s name using the name attribute. Consider the following HTML:

<form name="myForm">

<input name="user" type="text" value="">

</form>

You can access the form as document.forms[“myForm”] or the elements[] array of the
Form object to access the field as document.forms[“myForm”].elements[“user”]. Internet
Explorer generalizes these associative arrays a bit and calls them collections. Collections
in IE can be indexed with an integer, with a string, or with the special item() method.
The item() method is used to retrieve a named object from a collection and accepts a
string indicating the name of the object to retrieve. For example:

document.forms.item("myForm")

accesses the previous Form object. Internet Explorer collections are discussed in more
detail in Chapter 23, but for now just assume that collection.item(“name”) is the same as
collection[“name”].

Event Handlers
The primary way in which scripts respond to user actions is through event handlers.
An event handler is JavaScript code associated with a particular part of the document
and a particular “event.” The code is executed if and when the given event occurs at
the part of the document to which it is associated. Common events include Click,
MouseOver, and MouseOut, which occur when the user clicks, places the mouse over,

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

268 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

or moves the mouse away from a portion of the document. These events are commonly
associated with form buttons, form fields, images, and links and are used for rollover
buttons and tasks like form field validation. It is important to remember that not every
object is capable of handling every event. The events an object can handle are largely a
reflection of the way the object is most commonly used.

Setting Event Handlers
You have probably seen event handlers before in HTML. The following simple example
shows users an alert box when they click the button:

<form name="myForm" id="myForm">

<input name="myButton" type="button" value="Click me" onclick="alert('That

tickles!')">

</form>

The onclick attribute of the input element binds the given code to the button’s
Click event. Whenever the user clicks the button, the browser sends a Click event to
the Button object, causing it to invoke its onclick event handler.

How does the browser know where to find the object’s event handler? This is dictated
by part of the document object model known as the event model. An event model is
simply set of interfaces and objects that enable this kind of event handling. In most
major browsers, an object’s event handlers are accessible as properties of the object
itself. So instead of using HTML to bind an event handler to an object, we can do it
with pure JavaScript. The following code is equivalent to the previous example:

<form name="myForm" id="myForm">

<input name="myButton" type="button" value="Click me">

</form>

<script language="JavaScript" type="text/javascript">

<!--

document.myForm.myButton.onclick = new Function("alert('That tickles!')");

// -->

</script>

We define an anonymous function containing the code for the event handler and
then set the button’s onclick property equal to it.

Event Models
There is obviously much more to event handlers than we have described here. Both
major browsers implement sophisticated event models that allow applications great
flexibility when it comes to events. For example, if you have to define the same event
handler for a large number of objects, you can bind the handler once to an object higher
up the hierarchy rather than binding it to each child individually. A more complete
discussion of event handlers is found in Chapter 11.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 269

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Putting It All Together
Now that we have seen all the components of the traditional object model, it is time
to show how all the components are used together. As we have seen previously using
a name or id it is fairly easy to reference an occurrence of an HTML element that is
exposed in the JavaScript object model. For example, given:

<form name="myform" id="myform">

<input type="text" name="username" id="username">

</form>

we would use

document.myform.username

to access the field named username in this form. But how do you manipulate that tag’s
properties? The key to understanding JavaScript’s object model is that, generally, an
HTML element’s attributes are exposed as JavaScript object properties. So, given that
a text field in HTML has the basic syntax of:

<input type="text" name=" unique identifier" id=" unique identifier"
size=" number of characters" maxlength=" number of characters"
value=" default value" >

then document.myform.username.name references the name attribute of a text field
from our example, document.myform.username.size references its displayed screen size
in characters, and so on. The following simple example puts everything together and
shows how the content of a form field is accessed and displayed dynamically in an
alert window by referencing the fields by name.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Meet and Greet</title>

<script language="JavaScript" type="text/javascript">

<!--

function sayHello()

{

var theirname = document.myform.username.value;

if (theirname ! = "")

alert("Hello "+theirname+"!");

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

270 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

else

alert("Don't be shy.");

}

// -->

</script>

</head>

<body>

<form name="myform" id="myform">

What's your name?

<input type="text" name="username" id="username" size="20">

<input type="button" value="Greet" onclick="sayHello()">

</form>

</body>

</html>

Aside from reading the contents of an element with JavaScript, it also is possible, in
some cases, to update the contents of certain elements, such as form fields. The following
code shows how this might be done:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Meet and Greet 2</title>

<script language="JavaScript" type="text/javascript">

<!--

function sayHello()

{

var theirname = document.myform.username.value;

if (theirname != "")

document.myform.response.value="Hello "+theirname+"!";

else

document.myform.response.value="Don't be shy.";

}

// -->

</script>

</head>

<body>

<form name="myform" id="myform">

What's your name?

<input type="text" name="username" id="username" size="20">

Greeting:

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 271

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

<input type="text" name="response" id="response" size="40">

<input type="button" value="Greet" onclick="sayHello()">

</form>

</body>

</html>

One final item to note is that some of the Document properties are writeable, while
others are not. Notice how the anchors[], forms[], and links[] arrays are listed as read-
only in Table 9-2. This does not imply that you cannot modify data contained in elements
of these arrays. Rather, it means that you cannot modify the elements of the arrays
themselves. For example, although you can modify data in a particular form, for
instance document.forms[0].userName.value, you cannot replace the form forms[0] with
another Form object. Because of the containment hierarchy, all interesting information
is contained inside each object anyway, so this restriction does not present a problem.

The previous examples simply show how to access elements using an object model.
Later on, in Part IV of the book, we’ll see how to do something interesting like form
checking using these techniques. Now that we understand the basics of using an object
model, it is time to take a look at the specific object models supported by the popular
Web browsers.

The Object Models
So far, the discussion has focused primarily on the generic features common to all
document object models, regardless of browser version. Not surprisingly, every time
a new version was released, browser vendors extended the functionality of the Document
object in various ways. Bugs were fixed, access to a greater portion of the document
was added, and the existing functionality was continually improved.

The gradual evolution of document object models is a good thing in the sense that
more recent object models allow you to carry out a wider variety of tasks more easily.
However it also poses some major problems for Web developers. The biggest issue
is that the object models of different browsers evolved in different directions. New
proprietary tags were added to facilitate the realization of Dynamic HTML (DHTML),
and new, nonstandard means of carrying out various tasks became a part of both Internet
Explorer and Netscape. The result is that the brand-new DHTML code a developer writes
using the Netscape object model probably will not work in Internet Explorer (and vice
versa). The following sections discuss the object models of major browser versions. In
particular, we highlight the new features to be found in each and their relevance to
common programming tasks.

Netscape 2
The object model of Netscape 2 is that of the basic object model presented earlier in
the chapter. It was the first browser to present such an interface to JavaScript, and its

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:52 AM

Color profile: Generic CMYK printer profile
Composite Default screen

capabilities are limited. With these limitations, the main uses of JavaScript in this
browser are form validation and very simple page manipulation, such as printing
the last date of modification.

Netscape 3
Netscape 3’s Document object opened the door for the first primitive DHTML-like
applications. It exposes more of the document content to scripts by providing the ability
to access embedded objects, applets, plugins, and images. This object model is shown in
Figure 9-5, and the major additions to the Document object are listed in Table 9-4.

272 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Figure 9-5. Netscape 3 object model

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Arguably the most important addition to the Document object in this version is the
inclusion of the images[] array. Although most of the properties of each Image object
are read-only, the src property is writeable. This afforded for the first time the ability
to change images dynamically in response to user events. A typical application of this
capability is rollover buttons—buttons that change appearance when the user’s mouse is
placed over them. Unfortunately, because Image objects had no event handlers in this
model, rollovers were usually implemented by placing the image inside of an anchor
tag; for example:

<a href="#"

onmouseover="document.images[0].src='/images/buttonOn.gif'"

onmouseout="document.images[0].src='/images/buttonOff.gif'">

Whenever a user’s mouse is placed over the link (and thereby over the image),
the anchor tag’s onmouseover event handler swaps images. When the user moves the
mouse away from the link, the anchor’s onmouseout handler swaps the original image
back in. Note how the href attribute is included in the anchor tag; omitting it may cause
the script to fail since the <a> tag will not instantiate a Link object unless it is properly
formed. We’ll take an in-depth look at image effects in Chapter 15.

Netscape also made a few additions to its support for forms. The reset() method
was added to the Form object and resets the form upon invocation, regardless of the
presence of a reset button. Other, subtler changes were made to the event handlers
available for each object. The major addition was the document-wide event handlers
onblur and onfocus. Although these properties are specified in the <body> tag of
the document, they are actually event handlers for the Window object.

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 273

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Property Description

applets[] Array of applets (<applet> tags) in the document.

domain String containing the hostname of the Web server from which
the document was fetched. Can be changed only to a more
general hostname (for instance, www.w3c.org to w3c.org).

embeds[] Array of embedded objects (<embed> tags) in the document.

images[] Array of images (tags) in the document.

plugins[] Array of plugins installed in the browser.

Table 9-4. New Document Properties in Netscape 3

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

274 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

More significant additions to the Window object were also made. The History
object was added at this point along with two new properties, closed and opener.
The window.closed property indicates if the user has closed that window and helps
to avoid using an invalid window. The window.opener property lets a “child” window
access its “parent,” the window containing the JavaScript that created it.

Netscape 4
The document object model of version 4 browsers marks the point at which support
for DHTML begins to mature. Outside of swapping images in response to user events,
there was little one could do to bring Web pages alive before Netscape 4. Major changes
in this version include support for the proprietary <layer> tag, additions to Netscape’s
event model, and the addition of Style objects and the means to manipulate them.
Figure 9-6 shows the essentials of Netscape 4’s object model; the most interesting
new properties of the Document object are listed in Table 9-5.

DHTML Additions
One of the most important features of Netscape 4’s document model is its exposure
of stylistic elements to scripts. In fact, the interaction between style sheets and
JavaScript under Netscape 4 is so pronounced that Netscape initially termed its style
sheet implementation JavaScript Style Sheets (JSSS). Further, if you disable JavaScript
under Netscape 4, you will find that style sheets will not work regardless of how
they are included.

Under Netscape 4, JavaScript programmers can create or manipulate CSS attributes
for every element in the document. It is important to note that this capability is primarily
useful for creating or changing stylistic elements before the content they apply to is
displayed on the screen. Under Netscape 4, the style of most HTML elements cannot
be changed once they are displayed. This is very different from the Internet Explorer
model discussed later in the chapter.

The new Document properties introduced in Netscape 4 that enable manipulation
of style are classes[], ids[], and tags[]. With JSSS you can access individual tags
named using HTML 4’s core id attribute with the ids[] property of the Document
object. The syntax for this is:

document.ids.idName.propertyName

where

■ idName indicates the particular ID you wish to access

■ propertyName designates the CSS property

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 275

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

For example, to change the size of the element with id=“myHeading”, you would write

document.ids.myHeading.fontSize = "64pt";

Figure 9-6. Netscape 4 object model

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

276 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Similarly, to change a particular group of tags identified with class attributes, you use
the classes[] property of Netscape 4’s Document object using the following syntax:

document.classes.className.tagName.propertyName

where

■ className indicates the name of the class you wish to access

■ tagName is the name of the specific tag in that class that you are interested in

■ propertyName indicates the particular CSS property to access

Note that if you wish to access the style information for all tags in a particular class,
you can use “all” for the tagName.

For example, suppose that you have defined two classes in the <style> tag
called “important” and “codeListing.” You could change the color of list items in
the “important” class as:

document.classes.important.li.color = "red";

or the font of all elements with the “codeListing” class as:

document.classes.codeListing.all.fontFamily = "monospace";

Lastly, the tags[] property lets you define or manipulate style globally for a
particular HTML element. Its syntax is

document.tags.tagName.propertyName

Property Description

classes Creates or accesses CSS style for HTML elements with class
attributes set.

ids Creates or accesses CSS style for HTML elements with id
attributes set.

layers[] Array of layers (<layer> tags or positioned <div> elements) in the
document. If indexed by an integer, the layers are ordered from back
to front by z-index (where z-index of 0 is the bottommost layer).

tags Creates or accesses CSS style for arbitrary HTML elements.

Table 9-5. New Document Properties in Netscape 4

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 277

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

where

■ tagName specifies the HTML element

■ propertyName indicates the particular CSS property to access

For example, to change the text color of <h1> to blue, you might write:

document.tags.h1.color = "blue";

There are quite a few other aspects of JSSS, but the point is not to cover the syntax
in detail. In fact, this discussion is primarily historical in nature. Using this syntax is
not encouraged at all. It works only in Netscape 4.x generation browsers. Even hardcore
Netscape fanatics didn’t give much thought to this syntax, since it affects only the
presentation of an HTML element before the element is rendered. For example,
consider the following simple JSSS example.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Simple Netscape JSSS Example</title>

</head>

<body>

<script language="JavaScript" type="text/javascript">

<!--

// Danger! Example only works in Netscape 4.x Browsers

document.tags.h1.color = "blue";

document.ids.myHeading.fontSize = "64pt";

document.classes.important.p.backgroundColor = "orange";

document.classes.important.all.fontStyle = "italic";

// -->

</script>

<h1 class="important">This is an H1 with class important</h1>

<hr>

<p class="important">This is a paragraph with class important</p>

<h2 id="myHeading">This is an H2 with id myHeading</h2>

<p class="important">This is a paragraph with class important</p>

</body>

</html>

The output is shown in Figure 9-7; but remember, if we place the script block after the
HTML elements the page presentation will not be modified.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

One aspect of the Netscape 4.x generation of browsers that is important to understand
from a historical perspective is the Layer object.

Netscape Layers
Outside of the manipulation of style, Netscape 4 recognizes a new, proprietary
HTML tag: <layer>. The <layer> tag allows you to define content areas that can be
precisely positioned, moved, and overlapped as well as rendered hidden, visible, or
even transparent. You can write new content to a layer using its write() and writeln()
methods, enabling functionality akin to some of the more advanced features of Internet
Explorer. Netscape envisioned this tag as one of the primary foundations upon which
DHTML applications would be built. However, the <layer> tag never made it into the
W3C’s HTML standard and was never included by any competing browser vendors.
As a result, Netscape abandoned the tag in version 6 of its browser. Thus the <layer>
tag is available only in Netscape 4.x browsers. It is for this reason that its utility is
considered to be fairly limited. Even in the Netscape 4.x browser, the <div> element
combined with Cascading Style Sheets positioning rules provide very similar capabilities.

278 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Figure 9-7. Netscape JSSS affects presentation only before page load.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

However, if you must perform some form of positioning in Netscape 4.x, you may be
forced to use a <layer> tag or at least manipulate a more standard <div> tag with CSS
through the Layer object. For example, in the script here, a region was positioned using
CSS—but to dynamically modify it under Netscape 4.x, you must use the Layer object.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>NS4 Layer Example</title>

<style type="text/css">

<!--

#div1 { position: absolute;

top: 200px;

left: 350px;

height: 100px;

width: 100px;

background-color: orange;}

-->

</style>

</head>

<body>

<h1 align="center">Netscape 4 Layer Example</h1>

<div id="div1">An example of a positioned region</div>

<form>

<input type="button" value="hide"

onclick="document.layers['div1'].visibility='hide'">

<input type="button" value="show"

onclick="document.layers['div1'].visibility='show'">

</form>

</body>

</html>

Only the first level of nested layers is available via document.layers[], because
each layer receives its own Document object. To reach a nested layer, you must
navigate to the outer layer, then through its Document to the nested layer’s layers[]
array, and so on. For example, to reach a layer within a layer you might write:

var nestedLayer = document.layers[0].document.layers[0].document;

Although the use of layers will eventually die off, layers do provide a good way to
detect version 4 Netscape browsers. Under Netscape 4, accessing document.layers will

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 279

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

280 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

return the layers[] array. Under any other browser, accessing document.layers will
return undefined, so you can conveniently check for Netscape 4 like this:

if (document.layers) { /* do something Netscape specific */ }

Window Additions
A tremendous number of new properties were added to the Window object in
Netscape 4. Included are properties that give information about screen size, height,
and width; properties that give information about the configuration of various toolbars
in the user’s browser; base-64 encoding and decoding methods; methods to move,
resize, and offset the screen; and methods to simulate the click of the browser’s
forward and back buttons.

Event Model Additions
Aside from the addition of new mouse and keyboard event handlers, such as
onmouseup/down and onkeyup/down, Netscape fleshed out its event model in
several significant ways. Events in this browser begin at the top of the object hierarchy
and “trickle down” to the object upon which they are acting. This traversal allows
Window and Document objects (including Layer objects) to perform captures that
halt or alter the downward “flow” of an event. Event capturing is achieved with the
captureEvents() method and permits a captured event to be dealt with at the “higher”
level—modified, redirected, or simply passed through to continue on its way down
the hierarchy. This feature is used to simplify programming pages where numerous
lower-level objects like form fields all require the same event handlers. A detailed
discussion of Netscape 4 event handling can be found in Chapter 11.

Netscape 6
The release of Netscape 6 marks a new era for Netscape browsers. The main emphasis
of this browser is standards compliance, a refreshing change from the ad hoc proprietary
document object models of the past. It is backwards compatible with the so-called
DOM Level 0, the W3C’s DOM standard that incorporates many of the widespread
features of older document object models, in particular that of Netscape 3. However,
it also implements DOM Level 1 and parts of DOM Level 2, the W3C’s object models
for standard HTML, XML, CSS, and events. These standard models differ in significant
ways from older models and are covered in detail in the next chapter.

Support for nearly all of the proprietary extensions supported by Netscape 4, most
notably the <layer> tag and corresponding JavaScript object, have been dropped in
Netscape 6. This breaks the paradigm that allowed developers to program for older
browser versions knowing that such code would be supported by newer versions. Like
many aspects of document models, this is both good and bad; older code may
not work in Netscape 6, but future code written for this browser will have a solid
standards foundation.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Internet Explorer 3
The object model of IE3 is the basic “lowest common denominator” object model
presented at the beginning of this chapter. It includes several “extra” properties in the
Document object not included in Netscape 2, for example the frames[] array, but for
the most part it corresponds closely to the model of Netscape 2. The Internet Explorer 3
object model is shown in Figure 9-8.

For the short period of time when Netscape 2 and IE3 coexisted as the latest
versions of the respective browsers, object models were in a comfortable state of unity.
It wouldn’t last long.

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 281

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Figure 9-8. Internet Explorer 3 object model mimics Netscape 2.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Internet Explorer 4
Like version 4 of Netscape’s browser, IE4 lays the foundations for DHTML applications
by exposing much more of the page to JavaScript. In fact, it goes much further than
Netscape 4 by representing every HTML element as an object. Unfortunately, it does so
in a manner incompatible with Netscape 4’s object model. The basic object model of
Internet Explorer 4 is shown in Figure 9-9.

282 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Figure 9-9. Internet Explorer 4 object model

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Inspection of Figure 9-9 reveals that IE4 supports the basic object model of
Netscape 2 and IE3, plus most of the features of Netscape 3 as well as many of its
own features. This suggests that code can be written for the set of properties that
IE4 and Netscape 3 have in common without too many problems. Table 9-6 lists some
important new properties found in IE4. You will notice that Figure 9-9 and Table 9-6
show that IE4 also implements new Document object features radically different from
those present in Netscape 4. It is in version 4 of the two major browsers where the
object models begin their radical divergence.

DHTML Additions
One of the most important new JavaScript features introduced in IE4 is the
document.all[] collection. This array provides access to every element in the
document. It can be indexed in a variety of ways and returns a collection of
objects matching the index, id or name attribute provided; for example:

// sets variable to the fourth element in the document

var theElement = document.all[3];

// finds tag with id or name = myHeading

var myHeading = document.all["myHeading"];

// alternative way to find tag with id or name = myHeading

var myHeading = document.all.item("myHeading");

// returns array of all tags

var allEm = document.all.tags("EM");

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 283

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Property Description

all[] Array of all HTML tags in the document

applets[] Array of all applets (<applet> tags) in the document

children[] Array of all child elements of the object

embeds[] Array of embedded objects (<embed> tags) in the document

images[] Array of images (tags) in the document

scripts[] Array of scripts (<script> tags) in the document

styleSheets[] Array of Style objects (<style> tags) in the document

Table 9-6. New Document Properties in Internet Explorer 4

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

As you can see there are many ways to access the elements of a page, but,
regardless of the method used, the primary effect of the document.all[] collection is
that it flattens the document object hierarchy to allow quick and easy access to any
portion of an HTML document. The following simple example shows that Internet
Explorer truly does expose all the elements in a page; its result is shown in Figure 9-10.

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Document.All Example</title>

</head>

<body>

<h1>Example Heading</h1>

<hr>

<p>This is a paragraph. It is only a paragraph.</p>

<p>Yet another paragraph.</p>

<p>This final paragraph has <em id="special">special emphasis.</p>

<hr>

<script language="JavaScript" type="text/javascript">

<!--

var i, origLength;

origLength = document.all.length;

document.write('document.all.length='+origLength+"
");

for (i = 0; i < origLength; i++)

{

document.write("document.all["+i+"]="+document.all[i].tagName+"
");

}

// -->

</script>

</body>

</html>

The previous example will result in an endless loop if you do not use the origLength
variable and rely on the document.all.length as your loop check. The reason is that the
number of elements in the document.all[] collection will grow every time you output
the element you are checking!

Similar to the trick to detect Netscape 4 through the existence of the Layer object,
many programmers rely on the existence of document.all to detect Internet Explorer
browsers and often rely on statements like:

if (document.all) { /* do something IE specific */ }

to deal with browser-specific code.

284 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 285

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

Once a particular element has been referenced using the document.all syntax,
you will find a variety of properties and methods associated with it, including the all
property itself, which references any tags enclosed within the returned tag. Tables 9-7
and 9-8 show some of the more interesting, but certainly not all of these new properties
and methods. Note that inline elements will not have certain properties (like
innerHTML) because by definition their tags cannot enclose any other content.

If Tables 9-7 and 9-8 seem overwhelming, do not worry. At this point you are not
expected to fully understand each of these properties and methods. Rather, we list
them to illustrate just how far the Netscape and Internet Explorer object models diverged
in a very short period of time.

Examination of the new features available in IE4 should reveal that this is the
first browser where real DHTML is possible. It provides the means to manipulate
style dynamically (after the page has loaded, unlike with Netscape 4) and to insert,

Figure 9-10. IE’s document.all[] collection exposes all document elements.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:06:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

286 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

Property Description

all[] Collection of all elements contained by the object.

children[] Collection of elements that are direct descendents of the object.

className String containing the CSS class of the object.

innerHTML String containing the HTML content enclosed by, but not
including, the object’s tags. This property is writeable for most
HTML elements.

innerText String containing the text content enclosed by the object’s tags.
This property is writeable for most HTML elements.

outerHTML String containing the HTML content of the element, including
its start and end tags. This property is writeable for most
HTML elements.

outerText String containing the outer text content of the element. This
property is writeable for most HTML elements.

parentElement Reference to the object’s parent in the object hierarchy.

style Style object containing CSS properties of the object.

tagName String containing the name of the HTML tag associated with
the object.

Table 9-7. Some New Properties for Document Model Objects in IE4

Method Description

click() Simulates clicking the object, causing the onclick
event handler to fire

getAttribute() Retrieves the argument HTML attribute for the element

insertAdjacentHTML() Allows the insertion of HTML before, after, or inside
the element

insertAdjacentText() Allows the insertion of text before, after, or inside the
element

removeAttribute() Deletes the argument HTML attribute from the element

setAttribute() Sets the argument HTML attribute for the element

Table 9-8. Some New Methods for Document Model Objects in IE4

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

modify, and delete arbitrary HTML and text. For the first time, JavaScript can
manipulate the structure of the document, changing content and presentation of
all aspects of the page as desired. The following example illustrates this feature
using Internet Explorer syntax:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

<html>

<head>

<title>Document.All Example #2</title>

</head>

<body>

<!-- Only works in Internet Explorer 4 and greater -->

<h1 id="heading1" align="center">DHTML Fun!!!</h1>

<form name="testform" id="testform">

<input type="button" value="Align Left"

onclick="document.all['heading1'].align='left'">

<input type="button" value="Align Center"

onclick="document.all['heading1'].align='center'">

<input type="button" value="Align Right"

onclick="document.all['heading1'].align='right'">

<input type="button" value="Bigger"

onclick="document.all['heading1'].style.fontSize='larger'">

<input type="button" value="Smaller"

onclick="document.all['heading1'].style.fontSize='smaller'">

<input type="button" value="Red"

onclick="document.all['heading1'].style.color='red'">

<input type="button" value="Blue"

onclick="document.all['heading1'].style.color='blue'">

<input type="button" value="Black"

onclick="document.all['heading1'].style.color='black'">

<input type="text" name="userText" id="userText" size="30">

<input type="button" value="Change Text"

onclick="document.all['heading1'].innerText=document.testform.userText.value">

</form>

</body>

</html>

As this short introduction demonstrates, there are tremendous possibilities for DHTML
in IE4. The examples given here barely scratch the surface of IE’s powerful document object
model, though they do show how a highly structured DOM might be presented to scripts.
Notice how the interface represents each element as a mutable object and that each object

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 287

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

has well-defined parent-child inclusion properties. These characteristics foreshadow many
of the features of the W3C DOM discussed in the next chapter.

Event Model Additions
IE4 implements an “opposite” event model from that of Netscape 4. Events begin at
the bottom of the hierarchy at the object where they occur and “bubble up” through
parent objects to the Window. Any object along the path from the origin of the event to
the “top” of the hierarchy can intercept an event, process it, and cancel it or pass it along
up the tree. To complicate matters, the properties of IE4’s Event object are different
from those of Netscape’s. We’ll see these differences in great detail in Chapter 11.

Internet Explorer 5, 5.5, and 6
The document object model of Internet Explorer 5.x is very similar to that of IE4. New
features include an explosive rise in the number of properties and methods available
in the objects of the document model and proprietary enhancements allowing the
development of reusable DHTML components.

Many of the additions to objects of the document model implement portions of
the W3C DOM. These features are significantly less complete than those found in
Netscape 6, but they are a step in the right direction. Microsoft has also included numerous
properties that build on the existing IE4 object model, making it much more robust
and capable of more powerful document manipulation. Also greatly increasing in number
are the event handlers added in IE5. As of IE5.5, the browser supports almost 40
different events, ranging from specific mouse and keyboard actions to editing events
such as cutting and pasting.

IE5 supports two new features called DHTML Behaviors and HTML Applications.
DHTML Behaviors allow programmers to define reusable DHTML components that can
be applied to arbitrary elements. HTML Applications (HTA’s) are HTML documents
that act more like a real programs than web applications. These features are not yet in
widespread use, but might make their way into future W3C standards. We’ll discuss both
of these technologies in Chapter 23 where we cover proprietary Internet Explorer features.

Internet Explorer 5.5 and 6 continue Microsoft’s trend of adding features that work
only in its browsers, including new behaviors, new forms of popup windows, scrollbar
changes, and so on. However, Internet Explorer 5.5 continues to improve its DOM support,
and the pre-release versions of Internet Explorer 6 available at the time of this book’s
writing suggest that IE6 will be totally CSS1- and DOM1-compliant, but that developers
must “switch on” the “standards-compliant mode” by including a valid <DOCTYPE>.
The browser will be backwards compatible with previous IE document object models in
order to preserve the functionality of old code. The question of whether or not further
standards will be implemented in IE6 is still up in the air.

288 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Opera, Mozilla, Konqueror, and Other Browsers
Although rarely considered by some Web developers, there are some other browsers
that have a small but loyal following in many tech-savvy circles. Most third-party
browsers are “strict standards” implementations, meaning that they implement W3C
and ECMA standards and ignore most of the proprietary object models of Internet
Explorer and Netscape. Some provide support for the basic Netscape 2 and IE3
object models, but most focus their development efforts on the W3C standards. If
the demographic for your Web site includes users likely to use third-party browsers
(for example, Linux users), it might be a good idea to avoid IE- and Netscape-specific
features and use the W3C DOM instead.

The Nightmare of Cross-Browser Object Support
The common framework of the Document object shared by Internet Explorer and
Netscape dates back to 1996. It might be hard to believe, but in the intervening years
there has been very little improvement to the parts of the document object model
the major browsers have in common.

As a result, when faced with a non-trivial JavaScript task, Web developers have
become accustomed to writing two separate scripts, one for Internet Explorer 4+ and
one for Netscape 4+. The IE version usually utilizes the extensive style manipulation
capabilities of IE4, often relying on the document.all[] collection, while the Netscape
version relies heavily on the <layer> tag and associated document.layers[] array for
similar functionality. Because the object models evolved in such incompatible directions,
this process can be tiresome and susceptible to errors and oversights. If the developer
does not take care in verifying support for particular features and testing applications
with a variety of browsers, he or she might be forced to rewrite pages of code.

Continuing down this road will only make the situation worse. If browser vendors
continue to make proprietary extensions document objects, the number of different
object models developers must support will continue to increase. How long can the
average developer be expected to accommodate the myriad of ways to perform seemingly
simple tasks like changing text color, replacing pieces of text, and interacting with
browser plugins?

Aside from the tedious nature of writing each piece of JavaScript code multiple
times for different browsers, there are other problems with traditional document object
models. One major question is how scripts will interact with newer technologies like
XML, given the diverse and heterogeneous nature of the traditional models. Are browser
wars again going to force developers into maintaining a different piece of JavaScript
code for each proprietary object model? Are we to be stuck with a fixed, browser-based
interface to each object model regardless of application requirements such as memory
footprint, speed, and presentation on alternative media?

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 289

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

290 J a v a S c r i p t : T h e C o m p l e t e R e f e r e n c e

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

It should be clear that the situation with traditional object models is less than
optimal. With many developers and users frustrated with incompatibilities in object
and events models, the Web is ripe for a change.

A Solution?
Such a change has been proffered by the standards put together by the World Wide
Web Consortium in the form of its Document Object Model. The W3C gives a succinct
description of the DOM: “It is a platform- and language-neutral interface that will
allow programs and scripts to dynamically access and update the content, structure
and style of documents, both HTML and XML.” This is music to Web developers’ ears.
Combined with the standardized ways of describing presentation characteristics defined
by CSS, the DOM promises a uniform paradigm for creating interactive documents not
only for the Web, but for a variety of offline business and technical endeavors as well.

Progress towards realization of this standard is already being made. Netscape has
made a firm commitment to implementation of standards, a commitment it is already
making good on with Netscape 6. Netscape is also actively supporting several Open
Source projects aimed at bringing standards compliance to the browser community.
In the year 2001, the Mozilla project is nearing the completion of developing its fully
featured standards-based browser. Microsoft is also coming around, promising
more DOM features than ever in version 6 of Internet Explorer.

It is interesting to observe that if browser vendors wholeheartedly embrace
the W3C DOM, the document models will have come full circle. In the mid-nineties,
there was a brief period of time when access to the document was uniform across
both major browsers. Version 4 of the browsers marked the beginning of the radical
divergence of object models, and there has been little compatibility since. If browser
vendors continue to support the W3C DOM, there might be a point in the future
when developers have access to a powerful, robust, and standardized interface for
the manipulation of structured documents.

Summary
This chapter gives a basic introduction to the traditional document object models. The
Document object is structured as a containment hierarchy and accessed by “navigating”
through general objects to those that are more specific. The most useful Document
properties are found in associative arrays, like images[], which can be indexed by an
integer or name when an element is named using an HTML tag’s name or id attribute.
Event handlers were introduced as a means to react to user events and may be set with
JavaScript or traditional HTML. The main portion of this chapter introduced the specific
document object nodels of the major browsers. Netscape 2 and Internet Explorer 3
implement the most basic object model upon which other models are built. Netscape 3
added a few useful new properties, while the bulk of the changes occur in Netscape 4.

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Netscape 6 was introduced as a standards-based browser not necessarily supporting
all portions of previous models. We saw that Internet Explorer 4 introduced some
powerful DHTML applications by exposing all portions of the document to scripts.
The IE4 object model was further extended by IE5, and further extensions are likely
in IE6. In the course of the chapter, the divergent and incompatible nature of the
different object models was stressed, and near the end a possible solution, the W3C
DOM, was proposed. The next chapter explains the details of the DOM and why it
might revolutionize the way scripts manipulate documents.

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9 / Chapter 9

FU
N

D
A

M
EN

TA
L

C
LIEN

T-S
ID

E
JA

V
A

S
C

R
IP

T

C h a p t e r 9 : T r a d i t i o n a l J a v a S c r i p t O b j e c t M o d e l s 291

P:\010Comp\CompRef8\127-9\ch09.vp
Wednesday, August 29, 2001 10:17:56 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 9127-9
Blind Folio 292

P:\010Comp\CompRef8\127-9\ch09.vp
Tuesday, August 28, 2001 11:07:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

