
I
Introduction

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1
Blind Folio 1

CHAPTER 1
Introduction to JavaScript

CHAPTER 2
JavaScript Core
Features—Overview

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6
Blind Folio 2

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

1
Introduction to JavaScript

JavaScript is the premier client-side scripting language used today on the Web. It’s widely
used in tasks ranging from the validation of form data to the creation of complex user
interfaces. Yet the language has capabilities that many of its users have yet to discover.

JavaScript can be used to manipulate the very markup in the documents in which it is
contained. As more developers discover its true power, JavaScript is becoming a first class
client-side Web technology, ranking alongside (X)HTML, CSS, and XML. As such, it will be a
language that any Web designer would be remiss not to master. This chapter serves as a brief
introduction to the language and how it is included in Web pages.

NOTEOTE JavaScript can also be used outside of Web pages, for example, in Windows Script Host or
for application development with Mozilla or Jscript.NET. We primarily focus on client-side
JavaScript embedded in Web pages, but the core language is the same no matter where it is used;
only the runtime environment (e.g., the browser objects discussed in Part 2) is different.

First Look at JavaScript
Our first look at JavaScript is the ever-popular “Hello World” example. In this version, we
will use JavaScript to write the string “Hello World from JavaScript!” into a simple XHTML
transitional document to be displayed.

NOTEOTE XHTML is the most recent version of HTML. It reformulates HTML in terms of XML,
bringing greater regularity to the language as well as an increased separation of logical structure
from the presentational aspects of documents.

L 1-1 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>JavaScript Hello World</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
</head>
<body>
<h1 align=“center”>First JavaScript</h1>

3

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1
Blind Folio 3

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

<hr />
<script type=“text/javascript”>
document.write(“Hello World from JavaScript!”);

</script>
</body>
</html>

Notice how the script is included directly in the markup using the <script> element that
encloses the simple one line script:

L 1-2 document.write(“Hello World from JavaScript!”);

Using the <script> element allows the browser to differentiate between what is JavaScript
and what is regular text or (X)HTML. If we type this example in using any standard text editor,
we can load it into a JavaScript-aware Web browser such as Internet Explorer, Netscape, Mozilla,
Opera, or many others and we should see the result shown in Figure 1-1.

If we wanted to bold the text we could modify the script to output not only some text
but also some markup. However, we need to be careful when the world of JavaScript and
the world of markup in XHTML, or HTML, intersect—they are two different technologies.
For example, consider if we substituted the following <script> block in the preceding
document, hoping that it would emphasize the text:

4 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

FIGURE 1-1 “Hello World from JavaScript” under Internet Explorer

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

L 1-3 <script type=“text/javascript”>

document.write(“Hello World from JavaScript!”);

</script>

Doing so should throw an error in our browser window, as shown in Figure 1-2. The reason is
that tags are markup, not JavaScript. Because the browser treats everything enclosed
in <script> tags as JavaScript, it naturally throws an error when it encounters something that
is out of place.

Note that some browsers unfortunately may not show errors directly on the screen. This
is due to the fact that JavaScript errors are so commonplace on the Web that error dialogs
became a real nuisance for many users, thus forcing the browser vendors to suppress errors
by default. In the case of many Netscape browsers you can type javascript: in the URL bar to
view the JavaScript console. In the case of Mozilla browsers, choose Tools | Web Development,
and enable the JavaScript console. Under Internet Explorer, by default the only indication
an error has occurred is a small error icon (yellow with an exclamation point) in the lower
left-hand corner of the browser’s status bar. Clicking this icon shows a dialog box with error
information. In order to have this information displayed automatically, you may have to check
“Display a notification about every script error,” which can be found under the Advanced tab
of the dialog displayed when selecting Internet Options.

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 5

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

FIGURE 1-2 JavaScript error dialog

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:05 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

Regardless of whether or not the error was displayed, to output the string properly we
could either include the element directly within the output string, like so,

L 1-4 document.write(“Hello World from
JavaScript!”);

or we could surround the output of the <script> element in a element like this:

L 1-5
<script type=“text/javascript”>

document.write(“Hello World from JavaScript!”);
</script>

In this case the tag happens to surround the output from the JavaScript
so it then gets read and is generally bolded by the browser. This example suggests the
importance of understanding the intersection of markup and JavaScript. In fact, before
learning JavaScript, readers should fully understand the subtleties of correct HTML or
more importantly XHTML markup. This is not a casual suggestion. Consider first that
any JavaScript used within malformed (X)HTML documents may act unpredictably,
particularly if the script tries to manipulate markup that is not well formed. Second,
consider that many, if not most, scripts will be used to produce markup, so you need to
know what you are outputting. In short, a firm understanding of (X)HTML is essential
to writing effective scripts. In this book we present all examples in validated XHTML 1.0
Transitional unless otherwise noted. We chose this variant of markup because it balances
the strictness of XHTML with the common practices of today’s Web developers.

TIPIP Readers looking for more information on correct HTML and XHTML usage should consult the
companion book HTML & XHTML: The Complete Reference, Fourth Edition by Thomas Powell
(McGraw-Hill/Osborne, 2003).

Adding JavaScript to XHTML Documents
As suggested by the previous example, the <script> element is commonly used to add script to
a document. However, there are four standard ways to include script in an XHTML document:

• Within the <script> element

• As a linked file via the src attribute of the <script> element

• Within an XHTML event handler attribute such as onclick

• Via the pseudo-URL javascript: syntax referenced by a link

Note that some older browser versions support other non-standard ways to include
scripts in your page, such as Netscape 4’s entity inclusion. However, we avoid discussing
these in this edition since today these methods are interesting only as historical footnotes
and are not used. The following section presents the four common methods for combining
markup and JavaScript, and should be studied carefully by all readers before tackling the
examples in the rest of the book.

6 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

The <script> Element
The primary method to include JavaScript within HTML or XHTML is the <script> element.
A script-aware browser assumes that all text within the <script> tag is to be interpreted
as some form of scripting language; by default this is generally JavaScript. However, it is
possible for the browser to support other scripting languages such as VBScript, which is
supported by the Internet Explorer family of browsers. Traditionally, the way to indicate the
scripting language in use is to specify the language attribute for the tag. For example,

L 1-6 <script language=“JavaScript”>

</script>

is used to indicate the enclosed content is to be interpreted as JavaScript. Other values are
possible; for example,

L 1-7 <script language=“VBS”>

</script>

would be used to indicate VBScript is in use. A browser should ignore the contents of the
<script> element when it does not understand the value of its language attribute.

TIPIP Be very careful setting the language attribute for <script>. A simple typo in the value will
usually cause the browser to ignore any content within.

According to the W3C HTML syntax, however, the language attribute should not be
used. Instead the type attribute should be set to indicate the MIME type of the language in
use. JavaScript’s MIME type is generally agreed upon to be “text/javascript”, so you use

L 1-8 <script type=“text/javascript”>
</script>

NOTEOTE The “W3C” is the World Wide Web Consortium, the international body responsible for
standardizing Web-related technologies such as HTML, XML, and CSS. The W3C Web site
is www.w3.org, and is the canonical place to look for Web standards information.

Practically speaking, the type attribute is not as common in markup as the language
attribute, which has some other useful characteristics, particularly to conditionally set code
depending on the version of JavaScript supported by the browser. This technique will be
discussed in Chapter 22 and illustrated throughout the book. To harness the usefulness of
the language attribute while respecting the standards of the <script> element, you might
consider using both:

L 1-9 <script language=“JavaScript” type=“text/javascript”>

</script>

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 7

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

8 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

Unfortunately, this doesn’t work well in some cases. First off, your browser will likely respect
the type attribute over language so you will lose any of the latter attribute. Secondly, the page
will not validate as conforming to the XHTML standard because, as we’ve said, the language
attribute is non-standard. Following the standard, using the type attribute is the best bet
unless you have a specific reason to use the non-standard language attribute.

NOTEOTE Besides using the type attribute for <script>, according to HTML specifications you could
also specify the script language in use document-wide via the <meta> element, as in <meta
http-equiv=“Content-Script-Type” content=“text/javascript” />. Inclusion of this statement
within the <head> element of a document would alleviate any requirement of putting the type
attribute on each <script> element. However, poor browser support for this approach suggests
continued use of the language and content attributes together to limit script execution.

Using the <script> Element
You can use as many <script> elements as you like. Documents will be read and possibly
executed as they are encountered, unless the execution of the script is deferred for later.
(The reasons for deferring script execution will be discussed in a later section.) The next
example shows the use of three simple printing scripts that run one after another.

L 1-10 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>JavaScript and the Script Tag</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
</head>
<body>
<h1>Ready start</h1>
<script type=“text/javascript”>

alert(“First Script Ran”);
</script>
<h2>Running...</h2>
<script type=“text/javascript”>

alert(“Second Script Ran”);
</script>
<h2>Keep running</h2>
<script type=“text/javascript”>

alert(“Third Script Ran”);
</script>
<h1>Stop!</h1>
</body>
</html>

Try this example in various browsers to see how the script runs. You may notice that
with some browsers the HTML is written out as the script progresses, with others not.
This shows that the execution model of JavaScript does vary from browser to browser.

Script in the <head>
A special location for the <script> element is within the <head> tag of an (X)HTML
document. Because of the sequential nature of Web documents, the <head> is always read

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

in first, so scripts located here are often referenced later on by scripts in the <body> of the
document. Very often scripts within the <head> of a document are used to define variables
or functions that may be used later on in the document. The example below shows how the
script in the <head> defines a function that is later called by script within the <script> block
later in the <body> of the document.

L 1-11 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>JavaScript in the Head</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
<script type=“text/javascript”>
function alertTest()
{
alert(“Danger! Danger! JavaScript Ahead”);

}
</script>
</head>
<body>
<h2 align=“center”>Script in the Head</h2>
<hr />
<script type=“text/javascript”>
alertTest();

</script>
</body>
</html>

Script Hiding
Most browsers tend to display the content enclosed by any tags they don’t understand, so
it is important to mask code from browsers that do not understand JavaScript. Otherwise,
the JavaScript would show up as text in the page for these browsers. Figure 1-3 shows
an example Web page viewed by non-JavaScript supporting browsers without masking.
One easy way to mask JavaScript is to use HTML comments around the script code.
For example:

L 1-12 <script type=“text/javascript”>
<!--

put your JavaScript here

//-->
</script>

NOTEOTE This masking technique is similar to the method used to hide CSS markup, except that the
final line must include a JavaScript comment to mask out the HTML close comment. The reason
for this is that the characters – and > have special meaning within JavaScript.

While the comment mask is very common on the Web, it is actually not the appropriate way
to do it in strict XHTML. Given that XHTML is an XML-based language, many of the characters
found in JavaScript, such as > or &, have special meaning, so there could be trouble with the

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 9

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

10 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

previous approach. According to the strict XHTML specification, you are supposed to hide the
contents of the script from the XHTML-enforcing browser using the following technique:

L 1-13 <script type=“text/javascript”>
<![CDATA[
..script here ..
]]>
</script>

This approach does not work in any but the strictest XML-enforcing browsers. It generally
causes the browser to ignore the script entirely or throw errors, so authors have the option
of using linked scripts or traditional comment blocks, or simply ignoring the problem of

FIGURE 1-3 JavaScript code may print on the screen if not masked.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:06 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

down-level browsers. Most Web developers interested in strict XHTML conformance use
linked scripts; developers only interested in HTML (or not interested in standards at all)
generally use the traditional comment-masking approach. We’ve chosen the latter approach
as it is the most widely used on the Web today.

The <noscript> Element
In the situation that a browser does not support JavaScript or that JavaScript is turned off,
you should provide an alternative version or at least a warning message telling the user
what happened. The <noscript> element can be used to accomplish this very easily. All
JavaScript-aware browsers should ignore the contents of <noscript> unless scripting is off.
Browsers that aren’t JavaScript-aware will show the enclosed message (and they’ll ignore
the contents of the <script> if you’ve remembered to HTML-comment it out). The following
example illustrates a simple example of this versatile element’s use.

L 1-14 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>noscript Demo</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
</head>
<body>
<script type=“text/javascript”>
<!--

alert(“Your JavaScript is on!”);
//-->
</script>
<noscript>

Either your browser does not support JavaScript or it
is currently disabled.

</noscript>
</body>
</html>

Figure 1-4 shows a rendering in three situations: first a browser that does not support
JavaScript, then a browser that does support it but has JavaScript disabled, and finally a
modern browser with JavaScript turned on.

One interesting use of the <noscript> element might be to redirect users automatically
to a special error page using a <meta> refresh if they do not have scripting enabled in the
browser or are using a very old browser. The example below shows how this might be done.

L 1-15 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>noscript Redirect Demo</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
<!-- warning example does not validate -->
<noscript>

<meta http-equiv=“Refresh” content=“0;URL=/errors/noscript.html” />
</noscript>
</head>

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 11

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

12 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

FIGURE 1-4 Use <noscript> to handle browsers with no JavaScript.

Old browser
not supporting
JavaScript shows
<noscript>
message.

Browser with
JavaScript
disabled
shows
<noscript>

Browser with
JavaScript on
hides message
and runs code.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 13

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

<body>
<script type=“text/javascript”>
<!--
document.write(“Congratulations! If you see this you have JavaScript.”);

//-->
</script>
<noscript>

<h2>Error: JavaScript required</h2>
<p>Read how to rectify this problem.</p>

</noscript>
</body>
</html>

Unfortunately, according to the XHTML specification the <noscript> tag is not supposed
to be found in the <head>, so this example will not validate. This seems more an oversight
than an error considering that the <script> tag is allowed in the <head>. However, for those
looking for strict markup, this useful technique is not appropriate, despite the fact that it
could allow for robust error handling of down-level browsers. More information about
defensive programming techniques like this one is found in Chapter 23.

Event Handlers
To make a page more interactive you can add JavaScript commands that wait for a user to
perform a certain action. Typically, these scripts are executed in response to form actions
and mouse movements. To specify these scripts we set up various event handlers, generally
by setting an attribute of an (X)HTML element to reference a script. We refer to these
attributes collectively as event handlers—they perform some action in response to a user
interface event. All of these attributes start with the word “on,” indicating the event in
response to which they’re executed, for example, onclick, ondblclick, and onmouseover.
This simple example shows how a form button would react to a click:

L 1-16 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>JavaScript and HTML Events Example</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
</head>
<body>
<form action=“#” method=“get”>
<input type=“button” value=“press me”

onclick=“alert(‘Hello from JavaScript!’);” />
</form>
</body>
</html>

NOTEOTE When writing traditional HTML markup, developers would often mix case in the event handlers,
for example onClick=““. This mixed casing made it easy to pick them out from other markup and had
no effect other than improving readability. Remember, these event handlers are part of HTML and
would not be case sensitive, so onClick, ONCLICK, onclick, or even oNcLiCK are all valid. However,
XHTML requires all lowercase, so you should lowercase event handlers regardless of the tradition.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

14 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

By putting together a few <script> tags and event handlers you can start to see how
scripts can be constructed. The following example shows how a user event on a form
element can be used to trigger a JavaScript defined in the <head> of a document.

L 1-17 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>Event Trigger Example</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
<script type=“text/javascript”>
<!--
function alertTest()
{
alert(“Danger! Danger!”);

}
//-->
</script>
</head>
<body>
<div align=“center”>
<form action=“#” method=“get”>
<input type=“button” value=“Don’t push me!”

onclick=“alertTest();” />
</form>
</div>
</body>
</html>

A rendering of the previous example is shown in Figure 1-5.
You may wonder which (X)HTML elements have event handler attributes. Beginning

with the HTML 4.0 specification nearly every tag (generally, all that have a visual display)
should have one of the core events, such as onclick, ondblclick, onkeydown, onkeypress,
onkeyup, onmousedown, onmousemove, onmouseout, onmouseover, and onmouseout
associated with it. For example, even though it might not make much sense, you should be
able to specify that a paragraph can be clicked using markup and script like this:

L 1-18 <p onclick=“alert(‘Under HTML 4 you can!’)”>Can you click me</p>

Of course many older browsers, even from the 4.x generation, won’t recognize event
handlers for many HTML elements, such as paragraphs. Most browsers, however, should
understand events such as the page loading and unloading, link presses, form fill-in, and
mouse movement. The degree to which each browser supports events and how they are
handled varies significantly, but the core events are widely supported among modern
browsers. Many examples throughout the book will examine how events are handled
and an in-depth discussion on browser differences for event handling can be found in
Chapter 11.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Linked Scripts
A very important way to include a script in an HTML document is by linking it via the src
attribute of a <script> tag. The example here shows how we might put the function from
the previous example in a linked JavaScript file.

L 1-19 <!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Transitional//EN”
“http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd”>
<html xmlns=“http://www.w3.org/1999/xhtml” lang=“en”>
<head>
<title>Event Trigger Example using Linked Script</title>
<meta http-equiv=“content-type” content=“text/html; charset=ISO-8859-1” />
<script type=“text/javascript” src=“danger.js”></script>
</head>
<body>
<div align=“center”>
<form action=“#” method=“get”>
<input type=“button” value=“Don’t push me!” onclick=“alertTest();” />
</form>
</div>
</body>
</html>

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 15

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

FIGURE 1-5 Scripts can interact with users.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:07 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Notice that the src attribute is set to the value “danger.js.” This value is a URL path to
the external script. In this case, it is in the same directory, but it could have just as easily
been an absolute URL such as http://www.javascriptref.com/scripts/danger.js. Regardless
of the location of the file, all it will contain is the JavaScript code to run—no HTML or other
Web technologies. So in this example the file danger.js could contain the following script:

L 1-20 function alertTest()
{
alert(“Danger! Danger!”);

}

The benefit of script files that are external is that they separate the logic, structure, and
presentation of a page. With an external script it is possible to easily reference the script from
many pages in a site easily. This makes maintenance of your code easier because you only
have to update code common to many pages in one place (the external script file) rather than
on every page. Furthermore, a browser can cache external scripts so their use effectively
speeds up Web site access by avoiding extra download time retrieving the same script.

TIPIP Consider putting all the scripts used in a site in a common script directory similar to how
images are stored in an images directory. This will ensure proper caching, keep scripts separated
from content, and start a library of common code for use in a site.

While there are many benefits to using external scripts, they are often not used because
of some of their potential downsides. An uncommon reason is that not all JavaScript-aware
browsers support linked scripts. Fortunately, this problem is mostly related to extremely old
browsers, specifically Netscape 2 and some Internet Explorer 3 releases. These are extremely
uncommon browsers these days, so this isn’t much of a concern unless you’re
hyper-conscious of backward-compatibility.

The primary challenge with external scripts has to do with browser loading. If an
external script contains certain functions referenced later on, particularly those invoked by
user activities, programmers must be careful not to allow them to be invoked until they
have been downloaded or error dialogs may be displayed. That is, there’s no guarantee as
to when an externally linked script will be loaded by the browser. Usually, they’re loaded
very quickly, in time for any JavaScript in the page to reference them properly. But if the
user is connecting via a very slow connection, or if script calling functions defined in the
external script is executed immediately, they might not have loaded yet.

Fortunately, most of the problems with external scripts can be alleviated with good
defensive programming styles as demonstrated throughout the book. Chapter 23 covers
specific techniques in detail. However, if stubborn errors won’t seem to go away and
external scripts are in use, a good suggestion is to move the code to be included directly
within the HTML file.

TIPIP When using external .js files make sure that your Web server is set up to map the file extension
.js to the MIME type text/javascript. Most Web servers have this MIME type set by default but
if you are experiencing problems with linked scripts this could be the cause.

16 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

JavaScript Pseudo-URL
In most JavaScript-aware browsers it is possible to invoke a script using the JavaScript
pseudo-URL. A pseudo-URL like javascript: alert(‘hello’) would invoke a simple alert
displaying “hello” when typed directly in the browser’s address bar, as shown here:

Ill 1-1

NOTEOTE Under some browsers, notably versions 4 and above of Netscape, it is possible to gain access
to a JavaScript console when typing in the URL javascript: by itself. Other browsers have a
console that can be accessed to view errors and test code. However, Internet Explorer does not
provide such direct access to the console, which can be used both for debugging as well as for
testing the values of scripts. Examples of the JavaScript console are shown in Figure 1-6.

One very important way to use the JavaScript pseudo-URL is within a link, as
demonstrated here:

L 1-21 Click
to invoke

Ill 1-2

The pseudo-URL inclusion can be used to trigger any arbitrary amount of JavaScript, so

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 17

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

18 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

FIGURE 1-6 JavaScript console used for debugging and testing

Notice the
status bar
shows the
URL to
invoke is
script code.

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

L 1-22 Click to invoke

is just as acceptable as invoking a single function or method. Some developers have found this
quite useful and have designed functions to be executed on pages and saved as bookmarks.
When these javascript: links are added as “Favorites” or “Bookmarks” in your browser they
can be clicked in order to carry out a specific task. These scripts, typically dubbed bookmarklets
or favlets, are used to resize windows, validate pages, and perform a variety of useful
developer-related tasks.

NOTEOTE Running JavaScript via the URL in the form of a bookmark does have some security
considerations. Since bookmarklets stored in your browser execute in the context of the current
page, a malicious bookmarklet could be used to steal cookies for the current site. For this reason,
only install bookmarklets from sites you trust, or only after examining their code.

The javascript: URL does have a problem, of course, when used in a browser that does
not support JavaScript. In such cases, the browser will display the link appropriately but
the user will not be able to cause the link to do anything, which would certainly be very
frustrating. Designers relying on pseudo-URLs should make sure to warn users using the
<noscript> element, as shown here:

L 1-23 Fixed<noscript>
Warning: This page contains links that use JavaScript
and your browser either has JavaScript disabled or does not support this
technology.

</noscript>

However, this assumes that the user sees the message. A more defensive coding style
might be to recode the initial pseudo-URL link as follows.

L 1-24 <a href=“/errors/noscript.html” onclick=“ alert(‘hello I am a pseudo-URL
script’);return false;”>Click to invoke

In this case, with the script on the onclick, the JavaScript is run when the link is clicked
and return false kills the page load. However, with script off, the code will not run and
instead the user will be sent to the error page specified by the href attribute. While the
javascript: pseudo-URL does have some limitations, it is commonly found in all major
implementations of the language and used by many developers. It is definitely better,
however, to avoid using the pseudo-URL technique and replace it with the defensive
onclick code presented. Now before concluding the chapter, let’s take a brief look at what
JavaScript is used for, where it came from and where it is likely going.

History and Use of JavaScript
Knowledge of JavaScript’s past actually leads to a great deal of understanding about its
quirks, challenges, and even its potential role as a first class Web technology. For example,
even the name JavaScript itself can be confusing unless you consider history since, despite
the similarity in name, JavaScript has nothing to do with Java. Netscape initially introduced
the language under the name LiveScript in an early beta release of Navigator 2.0 in 1995,

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 19

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:08 PM

Color profile: Generic CMYK printer profile
Composite Default screen

and the focus of the language was initially for form validation. Most likely the language
was renamed JavaScript because of the industry’s fascination with all things Java at the
time as well as the potential for the two languages to be integrated together to build Web
applications. Unfortunately, because of including the word “Java” in its name, JavaScript is
often thought of as some reduced scripting form of Java. In reality the language as it stands
today is only vaguely similar to Java, and syntactically often shares more in common with
languages such as C, Perl, and Python.

While the name of the language has led to some confusion by some of its users, it has
been widely adopted by browser vendors. After Netscape introduced JavaScript in version
2.0 of their browser, Microsoft introduced a clone of JavaScript called JScript in Internet
Explorer 3.0. Opera also introduced JavaScript support during the 3.x generation of its
browser. Many other browsers also support various flavors of JavaScript. As time has gone
by, each of the major browser vendors has made their own extensions to the language and
the browsers have each supported various versions of JavaScript or JScript. Table 1-1 details
the common browsers that support a JavaScript language. The various features of each
version of JavaScript are discussed throughout the book, and Appendix B provides
information on the support of various features in each version of the language.

Because the specification of JavaScript is changing rapidly and cross-platform support
is not consistent, you should be very careful with your use of JavaScript with browsers.
Since different levels of JavaScript support different constructs, programmers should be
careful to create conditional code to handle browser and language variations. Much of the
book will deal with such issues, but a concentrated discussion can be found in Chapter 23.

Because of the cross-browser JavaScript nightmare inflicted on programmers, eventually
a standard form of JavaScript called ECMAScript (pronounced eck-ma-script) was specified.
Version 3 is the latest edition of ECMAScript. While most of the latest browsers have full or close
to full support for ECMAScript, the name itself has really yet to catch on with the public, and
most programmers tend to refer to the language, regardless of flavor, as simply JavaScript.

20 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

Browser Version JavaScript Support

Netscape 2.x 1.0

Netscape 3.x 1.1

Netscape 4.0–4.05 1.2

Netscape 4.06–4.08, 4.5x, 4.6x, 4.7x 1.3

Netscape 6.x,7.x 1.5

Mozilla variants 1.5

Internet Explorer 3.0 Jscript 1.0

Internet Explorer 4.0 Jscript 3.0

Internet Explorer 5.0 Jscript 5.0

Internet Explorer 5.5 Jscript 5.5

Internet Explorer 6 Jscript 5.6

TABLE 1-1
Browser Versions
and JavaScript
Support

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

NOTEOTE JavaScript 2.0 and ECMAScript version 4 are both being slowly pushed through the standards
process. Given the fall of Netscape, it is unclear what is going to happen to these versions of the
language, and so far the browser vendors are far from implementing the language. However, brief
mentions of important differences will be presented throughout the book where appropriate.

Even with the rise of ECMAScript, JavaScript can still be challenging to use. ECMAScript
primarily is concerned with defining core language features such as flow control statements
(e.g., if, for, while, and so on) and data types. But JavaScript also generally can access a
common set of objects related to its execution environment, most commonly a browser.
These objects—such as the window, navigator, history, screen—are not a part of the
ECMAScript specification, and are collectively referred to as the traditional Browser Object
Model or BOM. The fact that all the browser versions tend to have similar but subtly
different sets of objects making up their BOMs causes mass confusion and widespread
browser incompatibility in Web pages. The BOM finally reached its worst degree of
incompatibility with the 4.x generation of browsers introducing the idea of Dynamic HTML,
or DHTML. In reality there is no such thing, technically, as DHTML. The idea came from
marketing terms for the 4.x generation browsers and was used to characterize the dynamic
effects that arise from using HTML, CSS, and JavaScript on a page. If you are talking about
DHTML you are talking about the intersection of these technologies and not some all-new
technology separate from JavaScript.

Fortunately, the W3C has defined standard objects with which to access Web page
components such as HTML elements and their enclosed text fragments, CSS properties,
and even XML elements. In doing so, they’ve tried to end the nightmare of DHTML
incompatibilities. Their specification is called the Document Object Model, or DOM for
short. It defines a standard way to manipulate page elements in markup languages
and style sheets providing for all the effects possible with DHTML without the major
incompatibilities. However, there is some cross-over between what is part of the traditional
object model and what is DOM, and differences in DOM implementations abound. Fortunately,
the newer browsers have begun to iron out many incompatibilities and the interaction
between JavaScript and page objects is finally starting to become well defined. More
information on the DOM can be found at http://www.w3.org/DOM as well as in Chapter 10.

When taken together, core JavaScript as specified by ECMAScript, browser objects, and
document objects will provide all the facilities generally required by a JavaScript programmer.
Unfortunately, save the core language, all the various objects available seem to vary from
browser to browser and version to version, making correct cross-browser coding a real
challenge! A good portion of this book will be spent trying to iron out these difficulties.

As we have seen, study of the evolution of JavaScript can be critical for mastering its
use, as it explains some of the design motivations behind its changes. While JavaScript is
quite powerful as a client-side technology, like all languages, it is better at some types of
applications than others. Some of these common uses of JavaScript include

• Form validation

• Page embellishments and special effects

• Navigation systems

C h a p t e r 1 : I n t r o d u c t i o n t o J a v a S c r i p t 21

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

• Basic mathematical calculations

• Dynamic document generation

• Manipulation of structured documents

JavaScript does have its limits. It does not support robust error-handling features, strong
typing, or facilities useful for building large-scale applications. Yet despite its flaws and many
of the misunderstandings surrounding the language, it has succeeded wildly. Some might
say, if you consider all Web developers who have touched the language at one point or
another, it is one of the most popular and widely used—though misunderstood—languages
on the planet. JavaScript’s popularity is growing even beyond the Web, and we see its core
in the form of ECMAScript being used in embedded systems and within applications such
as Dreamweaver as an internal automation and scripting language. ECMAScript has also
spawned numerous related languages, most notably ActionScript in Flash. Much of the
user interface of the Mozilla and modern Netscape Web browsers is implemented with
JavaScript. JavaScript is no longer relegated to trivial simple rollover effects and form
checking; it is a powerful and widely used language. As such, JavaScript should be studied
rigorously, just like any programming language, and that is what we will do starting in the
next chapter.

Summary
JavaScript has quickly become the premier client-side scripting language used within Web
pages. Much of the language’s success has to do with the ease with which developers can
start using it. The <script> element makes it easy to include bits of JavaScript directly within
HTML documents; however, some browsers may need to use comments and the <noscript>
element to avoid errors. A linked script can further be employed to separate the markup
of a page from the script that may manipulate it. While including scripts can be easy, the
challenges of JavaScript are numerous. The language is inconsistently supported in browsers
and its tumultuous history has led to numerous incompatibilities. However, there is hope in
sight. With the rise of ECMAScript and the W3C specified Document Object Model, many of
the various coding techniques required to make JavaScript code work in different browsers
may no longer be necessary.

22 P a r t I : I n t r o d u c t i o n

Complete Reference / JavaScript: TCR / Powell & Schneider / 225357-6 / Chapter 1

P:\010Comp\CompRef8\357-6\ch01.vp
Tuesday, May 04, 2004 5:37:09 PM

Color profile: Generic CMYK printer profile
Composite Default screen

